Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, Forthcoming paper (Mi im9720)  

Difference analogue of the Treibich–Verdier operator.

G. S. Mauleshovaab, A. E. Mironovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Abstract: . In [1] it was shown that the one-dimensional finite-gap Schrödinger operator can be extended to a second-order difference operator depending on a small parameter and commuting with some difference operator of order 2g+1. In this case, if the small parameter tends to zero, then the second-order difference operator becomes a Schrödinger operator. In this paper we construct such an extension for the finite-gap Treibich-Verdier operator.
Keywords: Commuting difference operators, commuting differential operators
Received: 25.02.2025
Revised: 12.03.2025
Document Type: Article
UDC: 517.929.2
MSC: Primary 39A70; Secondary 34L40
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/im9720
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:42
     
      Contact us:
    math-net2025_07@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025