Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1993, Volume 41, Issue 2, Pages 273–288
DOI: https://doi.org/10.1070/IM1993v041n02ABEH002261
(Mi im916)
 

This article is cited in 5 scientific papers (total in 5 papers)

On some topological and geometrical properties of Frechet–Hilbert spaces

D. N. Zarnadze

Muskhelishvili Institute of Computational Mathematics
References:
Abstract: This paper contains a thorough investigation of topological, geometrical, and structural properties of Frechet spaces representable as a strict projective limit of a sequence of Hilbert spaces, and also of their strong duals, which are representable as a strict inductive limit of a sequence of Hilbert spaces. With the help of families of these spaces, representations are given for the topologies of strict inductive limits of nuclear Frechet spaces and their strong duals. In particular, these results are applicable for representing the topologies of the space D of test functions and the space D of generalized functions.
Received: 22.07.1991
Bibliographic databases:
UDC: 517.98
MSC: Primary 46A13, 46C05; Secondary 46B20
Language: English
Original paper language: Russian
Citation: D. N. Zarnadze, “On some topological and geometrical properties of Frechet–Hilbert spaces”, Russian Acad. Sci. Izv. Math., 41:2 (1993), 273–288
Citation in format AMSBIB
\Bibitem{Zar92}
\by D.~N.~Zarnadze
\paper On some topological and geometrical properties of Frechet--Hilbert spaces
\jour Russian Acad. Sci. Izv. Math.
\yr 1993
\vol 41
\issue 2
\pages 273--288
\mathnet{http://mi.mathnet.ru/eng/im916}
\crossref{https://doi.org/10.1070/IM1993v041n02ABEH002261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1209030}
\zmath{https://zbmath.org/?q=an:0786.46002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993IzMat..41..273Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MH85700005}
Linking options:
  • https://www.mathnet.ru/eng/im916
  • https://doi.org/10.1070/IM1993v041n02ABEH002261
  • https://www.mathnet.ru/eng/im/v56/i5/p1001
  • This publication is cited in the following 5 articles:
    1. Duglas Ugulava, David Zarnadze, “A generalization of the canonical commutation relation and Heisenberg uncertainty principle for the orbital operators”, Georgian Mathematical Journal, 30:6 (2023), 951  crossref
    2. Duglas Ugulava, David Zarnadze, “On linear spline algorithms of computerized tomography in the space of n-orbits”, Georgian Mathematical Journal, 29:6 (2022), 939  crossref
    3. Freyn W.D., “Tame Fréchet submanifolds of co-Banach type”, Forum Math., 27:4 (2015), 2467–2490  crossref  mathscinet  zmath  isi  scopus
    4. R Michael Howe, J Phys A Math Gen, 30:8 (1997), 2757  crossref  mathscinet  zmath  isi
    5. D. N. Zarnadze, “A generalization of the method of least squares for operator equations in some Frechet spaces”, Izv. Math., 59:5 (1995), 935–948  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:346
    Russian version PDF:152
    English version PDF:12
    References:54
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025