Processing math: 100%
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 6, Pages 1257–1269
DOI: https://doi.org/10.1070/IM9107
(Mi im9107)
 

This article is cited in 5 scientific papers (total in 5 papers)

Lattice of definability (of reducts) for integers with successor

A. L. Semenovabc, S. F. Soprunovd

a Lomonosov Moscow State University
b Federal Research Center ‘Informatics and Control’ of Russian Academy of Science
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
d Centre of pedagogical workmanship
References:
Abstract: In this paper the lattice of definability for integers with a successor (the relation y=x+1) is described. The lattice, whose elements are also knows as reducts, consists of three (naturally described) infinite series of relations. The proof uses a version of the Svenonius theorem for structures of special form.
Keywords: definability, reducts, Svenonius theorem.
Funding agency Grant number
Russian Science Foundation 17-11-01377
Russian Foundation for Basic Research 19-29-14199
This work was supported by the Russian Science Foundation (A. L. Semenov, grant no. 17-11-01377, Sections 1, 3, and 5) and the Russian Foundation for Basic Research (S. F. Soprunov, grant no. 19-29-14199, Sections 2 and 4).
Received: 27.09.2020
Revised: 12.01.2021
Bibliographic databases:
Document Type: Article
UDC: 510.635
Language: English
Original paper language: Russian
Citation: A. L. Semenov, S. F. Soprunov, “Lattice of definability (of reducts) for integers with successor”, Izv. Math., 85:6 (2021), 1257–1269
Citation in format AMSBIB
\Bibitem{SemSop21}
\by A.~L.~Semenov, S.~F.~Soprunov
\paper Lattice of definability (of reducts) for integers with successor
\jour Izv. Math.
\yr 2021
\vol 85
\issue 6
\pages 1257--1269
\mathnet{http://mi.mathnet.ru/eng/im9107}
\crossref{https://doi.org/10.1070/IM9107}
\zmath{https://zbmath.org/?q=an:07480692}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85.1257S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745285900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124241199}
Linking options:
  • https://www.mathnet.ru/eng/im9107
  • https://doi.org/10.1070/IM9107
  • https://www.mathnet.ru/eng/im/v85/i6/p245
  • This publication is cited in the following 5 articles:
    1. A. L. Semenov, S. F. Soprunov, I. A. Ivanov-Pogodaev, “Creating new mathematics by schoolchildren”, Dokl. Math., 107:Suppl 1 (2023), S132–S136  mathnet  crossref  crossref  elib
    2. V. V. Verbovskiy, A. D. Yershigeshova, “On o-stable Expansions of (Z,<,+)”, Lobachevskii J. Math., 44:12 (2023), 5485–5492  crossref
    3. G. P. Amirdjanov, I. B. Gurevich, F. V. Kostyuk, N. S. Kulberg, T. A. Rudchenko, A. L. Semenov, A. N. Sotnikov, Yu. O. Trusova, A. Yu. Uvarov, V. A. Vardanyan, T. V. Yakovleva, V. V. Yashina, A. S. Zakharova, “The role of the Scientific Council “Cybernetics” of the USSR academy of sciences/the Russian academy of sciences in the development of national cybernetics and computer technology”, Pattern Recognit. Image Anal., 33:4 (2023), 988–1049  crossref
    4. A. Semenov, S. Soprunov, “Automorphisms and definability (of reducts) for upward complete structures”, Mathematics, 10:20 (2022), 3748  crossref
    5. A. L. Semenov, “Teoriya opredelimosti v kontekste informatsionno-kommunikatsionnykh sistem”, Matematicheskie osnovy informatiki i informatsionno-kommunikatsionnykh sistem, Tverskoi gosudarstvennyi universitet, Tver, 2021, 61–68  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:686
    Russian version PDF:118
    English version PDF:47
    Russian version HTML:226
    References:52
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025