Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 6, Pages 1128–1145
DOI: https://doi.org/10.1070/IM9101
(Mi im9101)
 

This article is cited in 1 scientific paper (total in 1 paper)

Finitely generated subgroups of branch groups and subdirect products of just infinite groups

R. I. Grigorchuka, P.-H. Leemannb, T. V. Nagnibedacd

a Mathematical Department, Texas A&M University, USA
b Institut de Mathématiques, Université de Neuchâtel, Neuchâtel, Switzerland
c Section de mathématiques, Université de Genève, Genève, Switzerland
d Saint Petersburg State University
References:
Abstract: The aim of this paper is to describe the structure of finitely generated subgroups of a family of branch groups containing the first Grigorchuk group and the Gupta–Sidki 3-group. We then use this to show that all the groups in this family are subgroup separable (LERF).
These results are obtained as a corollary of a more general structural statement on subdirect products of just infinite groups.
Keywords: just infinite groups, subdirect products, branch groups.
Funding agency Grant number
Agence Nationale de la Recherche ANR-10-LABX-0070
ANR-11-IDEX-0007
Ministry of Science and Higher Education of the Russian Federation 14.W03.31.0030
The authors gratefully acknowledge support of the Swiss National Science Foundation. The second author carried out this work within the framework of the LABEX MILYON (ANR-10-LABX-0070) of the Université de Lyon, within the programme ‘Investissements d’Avenir' (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The first and third authors were partly supported by grant no. 14.W03.31.0030 from the Government of the Russian Federation.
Received: 05.09.2020
Bibliographic databases:
Document Type: Article
UDC: 512.544.2
Language: English
Original paper language: Russian
Citation: R. I. Grigorchuk, P.-H. Leemann, T. V. Nagnibeda, “Finitely generated subgroups of branch groups and subdirect products of just infinite groups”, Izv. Math., 85:6 (2021), 1128–1145
Citation in format AMSBIB
\Bibitem{GriLeeNag21}
\by R.~I.~Grigorchuk, P.-H.~Leemann, T.~V.~Nagnibeda
\paper Finitely generated subgroups of branch groups and subdirect products of just infinite groups
\jour Izv. Math.
\yr 2021
\vol 85
\issue 6
\pages 1128--1145
\mathnet{http://mi.mathnet.ru/eng/im9101}
\crossref{https://doi.org/10.1070/IM9101}
\zmath{https://zbmath.org/?q=an:07480688}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85.1128G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745286500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124246525}
Linking options:
  • https://www.mathnet.ru/eng/im9101
  • https://doi.org/10.1070/IM9101
  • https://www.mathnet.ru/eng/im/v85/i6/p104
  • This publication is cited in the following 1 articles:
    1. Matteo Cavaleri, Daniele D'Angeli, Alfredo Donno, Emanuele Rodaro, “On a class of poly-context-free groups generated by automata”, Journal of Algebra, 626 (2023), 135  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:434
    Russian version PDF:87
    English version PDF:1109
    Russian version HTML:200
    References:44
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025