Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 2, Pages 306–331
DOI: https://doi.org/10.1070/IM8995
(Mi im8995)
 

This article is cited in 16 scientific papers (total in 16 papers)

Properties of monotone path-connected sets

I. G. Tsar'kovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: We study monotone path-connected sets and also strongly and weakly Menger-connected sets. We introduce the notion of εε-solarity and establish a connection with the notion of solarity. We prove that boundedly compact suns in C(Q)C(Q) are monotone path-connected.
Keywords: spans, monotone path-connected sets, Menger connectedness, solarity.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00332-a
This paper was written with the financial support of the Russian Foundation of Basic Research (grant no. 19-01-00332-a).
Received: 27.11.2019
Revised: 24.07.2020
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
MSC: 41A65, 52A30, 54C65
Language: English
Original paper language: Russian
Citation: I. G. Tsar'kov, “Properties of monotone path-connected sets”, Izv. Math., 85:2 (2021), 306–331
Citation in format AMSBIB
\Bibitem{Tsa21}
\by I.~G.~Tsar'kov
\paper Properties of monotone path-connected sets
\jour Izv. Math.
\yr 2021
\vol 85
\issue 2
\pages 306--331
\mathnet{http://mi.mathnet.ru/eng/im8995}
\crossref{https://doi.org/10.1070/IM8995}
\zmath{https://zbmath.org/?q=an:1466.41017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..306T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701557800001}
\elib{https://elibrary.ru/item.asp?id=46031535}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105043191}
Linking options:
  • https://www.mathnet.ru/eng/im8995
  • https://doi.org/10.1070/IM8995
  • https://www.mathnet.ru/eng/im/v85/i2/p142
  • This publication is cited in the following 16 articles:
    1. I. G. Tsarkov, “Svoistva diskretnogo ne bolee chem schetnogo ob'edineniya mnozhestv v nesimmetrichnykh prostranstvakh”, Matem. sb., 216:2 (2025), 128–144  mathnet  crossref
    2. P. A. Borodin, E. A. Savinova, “Any Chebyshev curve without self-intersections is monotone”, Math. Notes, 116:2 (2024), 387–389  mathnet  crossref  crossref
    3. E. A. Savinova, “Sets in Rn monotone path-connected with respect to some norm”, Moscow University Mathematics Bulletin, 78:1 (2023), 49–51  mathnet  crossref  crossref  zmath  elib
    4. I. G. Tsar'kov, “Connectedness in asymmetric spaces”, J. Math. Anal. Appl., 527:1 (2023), 127381  crossref  mathscinet  zmath
    5. A. R. Alimov, “On local properties of spaces implying monotone path-connectedness of suns”, J. Anal., 31 (2023), 2287–2295  crossref  mathscinet
    6. I. G. Tsar'kov, “Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces”, Izv. Math., 87:4 (2023), 835–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. B. B. Bednov, “Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected”, Math. Notes, 114:3 (2023), 283–295  mathnet  crossref  crossref  mathscinet
    8. I. G. Tsar'kov, “Solarity and connectedness of sets in the space C[a,b] and in finite-dimensional polyhedral spaces”, Sb. Math., 213:2 (2022), 268–282  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. A. R. Alimov, “Tomograficheskie kharakterizatsionnye teoremy dlya solnts v trekhmernykh prostranstvakh”, Tr. IMM UrO RAN, 28, no. 2, 2022, 45–55  mathnet  crossref  elib
    10. I. G. Tsar'kov, “Uniformly and locally convex asymmetric spaces”, Sb. Math., 213:10 (2022), 1444–1469  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. I. G. Tsar'kov, “Approximative and structural properties of sets in asymmetric spaces”, Izv. Math., 86:6 (2022), 1240–1253  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. I. G. Tsar'kov, “Density of the Points of Continuity of the Metric Function and Projection in Asymmetric Spaces”, Math. Notes, 112:6 (2022), 1017–1024  mathnet  crossref  crossref
    13. I. G. Tsarkov, “Uniformly and locally convex asymmetric spaces”, Russ. J. Math. Phys., 29:1 (2022), 141–148  crossref  mathscinet  zmath
    14. A. R. Alimov, I. G. Tsarkov, “Solarity and proximinality in generalized rational approximation in spaces C(Q) and Lp”, Russ. J. Math. Phys., 29:3 (2022), 291–305  crossref  mathscinet  zmath
    15. A. R. Alimov, “Monotone path-connectedness of strict suns”, Lobachevskii J. Math., 43:3 (2022), 519–527  crossref  mathscinet  zmath
    16. I. G. Tsar'kov, “Properties of suns in the spaces L1 and C(Q)”, Russ. J. Math. Phys., 28:3 (2021), 398–405  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:514
    Russian version PDF:131
    English version PDF:83
    Russian version HTML:155
    References:64
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025