Abstract:
Let sequences {αn}∞n=1{αn}∞n=1, {βn}∞n=1{βn}∞n=1 satisfy the
relations αn∈R, βn∈R,
αn=o(√n/lnn),
βn=o(√n/lnn) as n→∞, and let [a,b]⊂(0,π) and
f∈C[a,b]. We redefine the function f as F on the interval [0,π] by
polygonal arcs in such a way that the function remains continuous and vanishes on a neighbourhood of the ends of the interval.
Also let the function f and
the pair of sequences {αn}∞n=1, {βn}∞n=1 be
connected by the equiconvergence condition. Then for the classical Lagrange–Jacobi
interpolation processes L(αn,βn)n(F,cosθ) to
approximate f
uniformly with respect to θ on [a,b] it is sufficient that f have bounded variation Vba(f)<∞ on [a,b]. In
particular, if the sequences {αn}∞n=1 and
{βn}∞n=1 are bounded, then for the classical Lagrange–Jacobi
interpolation processes L(αn,βn)n(F,cosθ) to
approximate f uniformly with respect to θ
on [a,b] it is sufficient that the variation of f be bounded on
[a,b], Vba(f)<∞.
Citation:
A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a matrix L(αn,βn)n of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249
\Bibitem{Try20}
\by A.~Yu.~Trynin
\paper On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a~matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes
\jour Izv. Math.
\yr 2020
\vol 84
\issue 6
\pages 1224--1249
\mathnet{http://mi.mathnet.ru/eng/im8992}
\crossref{https://doi.org/10.1070/IM8992}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181039}
\zmath{https://zbmath.org/?q=an:1466.41002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84.1224T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000605286500001}
\elib{https://elibrary.ru/item.asp?id=45023677}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099026221}
Linking options:
https://www.mathnet.ru/eng/im8992
https://doi.org/10.1070/IM8992
https://www.mathnet.ru/eng/im/v84/i6/p197
This publication is cited in the following 3 articles:
A. Yu. Trynin, “O skhodimosti obobschenii sink-approksimatsii na klasse Privalova–Chanturiya”, Sib. zhurn. industr. matem., 24:3 (2021), 122–137
A. Yu. Trynin, “Sufficient Conditions for Convergence of Generalized Sinc-Approximations on Segment”, J Math Sci, 255:4 (2021), 513
A. Yu. Trynin, “On the Convergence of Generalizations of the Sinc Approximations on the Privalov–Chanturia Class”, J. Appl. Ind. Math., 15:3 (2021), 531