Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 534–539
DOI: https://doi.org/10.1070/IM8825
(Mi im8825)
 

This article is cited in 6 scientific papers (total in 6 papers)

Embedding derived categories of Enriques surfaces in derived categories of Fano varieties

A. G. Kuznetsovabc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Междисциплинарный научный центр Понселе, Независимый Московский Университет
c Laboratory of algebraic geometry and its applications, Higher School of Economics, Moscow
References:
Abstract: We show that the bounded derived category of coherent sheaves on a general Enriques surface can be realized as a semi-orthogonal component in the derived category of a smooth Fano variety with diagonal Hodge diamond.
Keywords: derived category of coherent sheaves, Fano variety, Enriques surface.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Russian Academy of Sciences - Federal Agency for Scientific Organizations PRAS-18-01
This work was partially supported by the HSE University Basic Research Program, Russian Academic Excellence Project ‘5-100’ and the programme of the Presidium of the Russian Academy of Sciences 01 ‘Fundamental mathematics and its applications’ under grant PRAS-18-01.
Received: 15.06.2018
Revised: 26.09.2018
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: English
Original paper language: Russian
Citation: A. G. Kuznetsov, “Embedding derived categories of Enriques surfaces in derived categories of Fano varieties”, Izv. Math., 83:3 (2019), 534–539
Citation in format AMSBIB
\Bibitem{Kuz19}
\by A.~G.~Kuznetsov
\paper Embedding derived categories of Enriques~surfaces in derived categories of Fano varieties
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 534--539
\mathnet{http://mi.mathnet.ru/eng/im8825}
\crossref{https://doi.org/10.1070/IM8825}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954308}
\zmath{https://zbmath.org/?q=an:1427.14040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..534K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800005}
\elib{https://elibrary.ru/item.asp?id=37652145}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077574402}
Linking options:
  • https://www.mathnet.ru/eng/im8825
  • https://doi.org/10.1070/IM8825
  • https://www.mathnet.ru/eng/im/v83/i3/p127
  • This publication is cited in the following 6 articles:
    1. Tomoki Yoshida, “Full exceptional collections of line bundles on the blow-up of P5 along Segre threefold”, manuscripta math., 2024  crossref
    2. Y.-H. Kiem, K.-S. Lee, “Fano visitors, Fano dimension and Fano orbifolds”, Springer Proceedings in Mathematics & Statistics, 409, 2023, 517–544  crossref  mathscinet
    3. P. Belmans, L. Fu, T. Raedschelders, “Derived categories of flips and cubic hypersurfaces”, Proceedings of London Math. Soc., 125:6 (2022), 1452–1482  crossref  mathscinet
    4. Ch. Li, H. Nuer, P. Stellari, X. Zhao, “A refined derived Torelli theorem for Enriques surfaces”, Math. Ann., 379 (2021), 1475–1505  crossref  mathscinet  zmath  isi  scopus
    5. A. Kuznetsov, A. Perry, “Categorical joins”, J. Amer. Math. Soc., 34:2 (2021), 505–564  crossref  mathscinet  zmath  isi
    6. V. Przyjalkowski, C. Shramov, “Hodge level for weighted complete intersections”, Collect. Math., 71:3 (2020), 549–574  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:498
    Russian version PDF:50
    English version PDF:35
    References:53
    First page:20
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025