Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 42, Issue 3, Pages 501–560
DOI: https://doi.org/10.1070/IM1994v042n03ABEH001544
(Mi im870)
 

This article is cited in 4 scientific papers (total in 4 papers)

On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule

M. V. Karasev, A. V. Pereskokov
References:
Abstract: The method of isomonodromy deformations is used to prove connection formulas for the second Painleve transcendent, which is exponentially decreasing on one side of a turning point and has a Kuzmak–Luke–Whitham decomposition on the other. The phase advance turns out to be equal to π/2 (modπ). These connection formulas lead to the determination of the asymptotics of the eigenvalues for the Sturm–Liouville equation with a cubic nonlinearity.
Received: 27.12.1991
Bibliographic databases:
UDC: 517.946+517.958
MSC: Primary 34E20, 34E05; Secondary 34B24, 34A34, 34C15, 81S99
Language: English
Original paper language: Russian
Citation: M. V. Karasev, A. V. Pereskokov, “On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule”, Russian Acad. Sci. Izv. Math., 42:3 (1994), 501–560
Citation in format AMSBIB
\Bibitem{KarPer93}
\by M.~V.~Karasev, A.~V.~Pereskokov
\paper On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 42
\issue 3
\pages 501--560
\mathnet{http://mi.mathnet.ru/eng/im870}
\crossref{https://doi.org/10.1070/IM1994v042n03ABEH001544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243343}
\zmath{https://zbmath.org/?q=an:0815.34046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..42..501K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PE74800003}
Linking options:
  • https://www.mathnet.ru/eng/im870
  • https://doi.org/10.1070/IM1994v042n03ABEH001544
  • https://www.mathnet.ru/eng/im/v57/i3/p92
  • This publication is cited in the following 4 articles:
    1. S. A. Stepin, A. I. Shafarevich, “WKB method for nonlinear equations of Emden–Fowler type”, Dokl. Math., 105:1 (2022), 39–44  mathnet  crossref  crossref  mathscinet  elib
    2. Lipskaya A.V., Pereskokov A.V., “Kvaziklassicheskoe priblizhenie dlya odnomernykh uravnenii samosoglasovannogo polya s kubicheskoi nelineinostyu”, Vestn. Mosk. energeticheskogo in-ta, 2009, no. 6, 145–154  elib
    3. Yoshitsugu Takei, “On an exact WKB approach to Ablowitz-Segur's connection problem for the second Painlevé equation”, Anziam J, 44:1 (2002), 111  crossref  mathscinet  zmath  isi
    4. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity”, Izv. Math., 65:5 (2001), 883–921  mathnet  crossref  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:519
    Russian version PDF:156
    English version PDF:30
    References:95
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025