Abstract:
We obtain order estimates for the entropy numbers
of embedding operators of weighted Sobolev spaces on a John domain
as well as of two-weight summation operators on trees.
To do this, we prove a general result on upper bounds for the entropy numbers
of embedding operators of function spaces on sets with tree-like structure.
Citation:
A. A. Vasil'eva, “Entropy numbers of embedding operators of function spaces on sets with tree-like structure”, Izv. Math., 81:6 (2017), 1095–1142
\Bibitem{Vas17}
\by A.~A.~Vasil'eva
\paper Entropy numbers of embedding operators of function spaces on sets with tree-like structure
\jour Izv. Math.
\yr 2017
\vol 81
\issue 6
\pages 1095--1142
\mathnet{http://mi.mathnet.ru/eng/im8555}
\crossref{https://doi.org/10.1070/IM8555}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3733315}
\zmath{https://zbmath.org/?q=an:1388.41018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81.1095V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418891300003}
\elib{https://elibrary.ru/item.asp?id=30737830}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040970222}
Linking options:
https://www.mathnet.ru/eng/im8555
https://doi.org/10.1070/IM8555
https://www.mathnet.ru/eng/im/v81/i6/p38
This publication is cited in the following 2 articles:
V. A. Kyrov, “O lokalnom rasshirenii gruppy parallelnykh perenosov v trekhmernom prostranstve. II”, Vladikavk. matem. zhurn., 26:2 (2024), 54–69
A. A. Vasil'eva, “Entropy numbers of embeddings of function spaces on sets with tree-like structure: some generalized limiting cases”, Russ. J. Math. Phys., 25:2 (2018), 248–270