Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 5, Pages 894–901
DOI: https://doi.org/10.1070/IM2015v079n05ABEH002765
(Mi im8413)
 

This article is cited in 17 scientific papers (total in 17 papers)

Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem

S. V. Bolotin, V. V. Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: For non-autonomous Lagrangian systems we introduce the notion of a dynamically convex domain with respect to the Lagrangian. We establish the solubility of boundary-value problems in compact dynamically convex domains. If the Lagrangian is time-periodic, then such a domain contains a periodic trajectory. The proofs use the Hamilton principle and known tools of the calculus of variations in the large. Our general results are applied to Whitney's problem on the existence of motions of an inverted pendulum without falls.
Keywords: Lagrangian system, dynamically convex domain, Hamilton principle, Palais–Smale condition, Whitney's problem.
Funding agency Grant number
Russian Science Foundation 14-50-00005
The work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 21.05.2015
Bibliographic databases:
Document Type: Article
UDC: 531.01+517.974
MSC: 37C60, 37J45
Language: English
Original paper language: Russian
Citation: S. V. Bolotin, V. V. Kozlov, “Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem”, Izv. Math., 79:5 (2015), 894–901
Citation in format AMSBIB
\Bibitem{BolKoz15}
\by S.~V.~Bolotin, V.~V.~Kozlov
\paper Calculus of variations in the large, existence of trajectories in a~domain with boundary, and Whitney's inverted pendulum problem
\jour Izv. Math.
\yr 2015
\vol 79
\issue 5
\pages 894--901
\mathnet{http://mi.mathnet.ru/eng/im8413}
\crossref{https://doi.org/10.1070/IM2015v079n05ABEH002765}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438454}
\zmath{https://zbmath.org/?q=an:1367.37053}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..894B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367372500002}
\elib{https://elibrary.ru/item.asp?id=24849990}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948391285}
Linking options:
  • https://www.mathnet.ru/eng/im8413
  • https://doi.org/10.1070/IM2015v079n05ABEH002765
  • https://www.mathnet.ru/eng/im/v79/i5/p39
  • This publication is cited in the following 17 articles:
    1. D. D. Kulminskiy, M. V. Malyshev, “Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point”, Rus. J. Nonlin. Dyn., 20:4 (2024), 553–563  mathnet  crossref
    2. E. I. Kugushev, T. V. Salnikova, “Existence of Localized Motions in the Vicinity of an Unstable Equilibrium Position”, Proc. Steklov Inst. Math., 327 (2024), 118–129  mathnet  crossref  crossref
    3. Ivan Polekhin, “Asymptotically stable non-falling solutions of the Kapitza-Whitney pendulum”, Meccanica, 2023  crossref
    4. Ivan Yu. Polekhin, “The Spherical Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76  mathnet  crossref  mathscinet
    5. I. Yu. Polekhin, “The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum”, Theoret. and Math. Phys., 211:2 (2022), 692–700  mathnet  crossref  crossref  mathscinet  adsnasa
    6. Nikolay Stepanov, Mikhail Skvortsov, “Inverted pendulum driven by a horizontal random force: statistics of the never-falling trajectory and supersymmetry”, SciPost Phys., 13:2 (2022)  crossref
    7. I. Yu. Polekhin, “Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces”, Rus. J. Nonlin. Dyn., 16:2 (2020), 343–353  mathnet  crossref  mathscinet
    8. Ivan Yu. Polekhin, “The Method of Averaging for the Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410  mathnet  crossref  mathscinet
    9. Ivan Yu. Polekhin, “Some Results on the Existence of Forced Oscillations in Mechanical Systems”, Proc. Steklov Inst. Math., 310 (2020), 250–261  mathnet  crossref  crossref  isi  elib
    10. N. A. Stepanov, M. A. Skvortsov, “Lyapunov exponent for Whitney's problem with random drive”, JETP Letters, 112:6 (2020), 376–382  mathnet  crossref  crossref  isi  elib
    11. Ivan Polekhin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    12. R. Srzednicki, “On periodic solutions in the whitney's inverted pendulum problem”, Discret. Contin. Dyn. Syst.-Ser. S, 12:7 (2019), 2127–2141  crossref  mathscinet  isi
    13. I. Polekhin, “On topological obstructions to global stabilization of an inverted pendulum”, Syst. Control Lett., 113 (2018), 31–35  crossref  mathscinet  zmath  isi  scopus
    14. S. Ozana, M. Schlegel, “Computation of reference trajectories for inverted pendulum with the use of two-point BvP with free parameters”, IFAC PAPERSONLINE, 51:6 (2018), 408–413  crossref  isi  scopus
    15. I. Polekhin, “On motions without falling of an inverted pendulum with dry friction”, J. Geom. Mech., 10:4 (2018), 411–417  crossref  mathscinet  isi
    16. I. Yu. Polekhin, “On the impossibility of global stabilization of the Lagrange top”, Mech. Sol., 53:2 (2018), S71–S75  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
    17. Polekhin I., “A Topological View on Forced Oscillations and Control of An Inverted Pendulum”, Geometric Science of Information, Gsi 2017, Lecture Notes in Computer Science, 10589, eds. Nielsen F., Barbaresco F., Springer International Publishing Ag, 2017, 329–335  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:872
    Russian version PDF:255
    English version PDF:42
    References:111
    First page:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025