Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 44, Issue 1, Pages 91–118
DOI: https://doi.org/10.1070/IM1995v044n01ABEH001593
(Mi im817)
 

This article is cited in 4 scientific papers (total in 4 papers)

Asymptotic of a solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain

S. A. Nazarov
References:
Abstract: The asymptotics of the solution of the Neumann problem is studied for a second-order elliptic equation near a point of tangency of two surfaces forming the boundary of a domain in Rn, n3. In accordance with the procedure of investigating problems in thin domains, the resulting equation is found on the hyperplane Rn1, the power solutions of which occur in the asymptotics. The justification of the expansion first found formally is based on a priori estimates of solutions in spaces with weighted norms, reduction of the problem to the resulting equation by means of integration, and application of a familiar theorem regarding the asymptotics of the latter.
Received: 15.12.1992
Bibliographic databases:
UDC: 517.946
MSC: 35J25, 35B40
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Asymptotic of a solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 91–118
Citation in format AMSBIB
\Bibitem{Naz94}
\by S.~A.~Nazarov
\paper Asymptotic of a solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 1
\pages 91--118
\mathnet{http://mi.mathnet.ru/eng/im817}
\crossref{https://doi.org/10.1070/IM1995v044n01ABEH001593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1271516}
\zmath{https://zbmath.org/?q=an:0841.35030}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44...91N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995QU91700005}
Linking options:
  • https://www.mathnet.ru/eng/im817
  • https://doi.org/10.1070/IM1995v044n01ABEH001593
  • https://www.mathnet.ru/eng/im/v58/i1/p92
  • This publication is cited in the following 4 articles:
    1. Konstantin Pileckas, Alicija Raciene, “Non-stationary Navier–Stokes equations in 2D power cusp domain”, Advances in Nonlinear Analysis, 10:1 (2021), 982  crossref
    2. Munnier A., Ramdani K., “Asymptotic Analysis of a Neumann Problem in a Domain with Cusp. Application to the Collision Problem of Rigid Bodies in a Perfect Fluid”, SIAM J. Math. Anal., 47:6 (2015), 4360–4403  crossref  mathscinet  zmath  isi  elib  scopus
    3. Nazarov S.A. Taskinen J., “Spectral Anomalies of the Robin Laplacian in Non-Lipschitz Domains”, J. Math. Sci.-Univ. Tokyo, 20:1 (2013), 27–90  isi
    4. Nazarov S.A. Sokolowski J. Taskinen J., “Neumann Laplacian on a Domain with Tangential Components in the Boundary”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 34:1 (2009), 131–143  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:510
    Russian version PDF:124
    English version PDF:43
    References:106
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025