Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 2, Pages 375–387
DOI: https://doi.org/10.1070/IM2015v079n02ABEH002746
(Mi im8156)
 

This article is cited in 8 scientific papers (total in 8 papers)

The Hodge–de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with curvature operator of definite sign

S. E. Stepanova, J. Mikešb

a Financial University under the Government of the Russian Federation, Moscow
b Palacký University Olomouc
References:
Abstract: We give a comparative analysis of the spectral properties of the Hodge–de Rham and Tachibana operators on compact Riemannian manifolds whose curvature operator is bounded and has a definite sign. We find bounds for their spectra and estimate their multiplicities.
Keywords: Riemannian manifold, curvature operator, elliptic operators, eigenvalues and eigenforms, conformal Killing forms, harmonic forms.
Funding agency Grant number
Czech Science Foundation P201/11/0356
This paper was written with the financial support of the Czech Science Foundation, grant no. P201/11/0356.
Received: 05.08.2013
Revised: 14.02.2014
Bibliographic databases:
Document Type: Article
UDC: 514.764.25+515.168.5
Language: English
Original paper language: Russian
Citation: S. E. Stepanov, J. Mikeš, “The Hodge–de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with curvature operator of definite sign”, Izv. Math., 79:2 (2015), 375–387
Citation in format AMSBIB
\Bibitem{SteMik15}
\by S.~E.~Stepanov, J.~Mike{\v s}
\paper The Hodge--de Rham Laplacian and Tachibana operator on a~compact Riemannian
manifold with curvature operator of definite sign
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 375--387
\mathnet{http://mi.mathnet.ru/eng/im8156}
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002746}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352594}
\zmath{https://zbmath.org/?q=an:06443927}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..375S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400007}
\elib{https://elibrary.ru/item.asp?id=23421426}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928654166}
Linking options:
  • https://www.mathnet.ru/eng/im8156
  • https://doi.org/10.1070/IM2015v079n02ABEH002746
  • https://www.mathnet.ru/eng/im/v79/i2/p167
  • This publication is cited in the following 8 articles:
    1. Josef Mikeš, Sergey Stepanov, Irina Tsyganok, “New applications of the Ahlfors Laplacian: Ricci almost solitons and general relativistic vacuum constraint equations”, Journal of Geometry and Physics, 2024, 105414  crossref
    2. Zhang J., Zhang T., “Focusing Algorithm of Automatic Control Microscope Based on Digital Image Processing”, J. Sens., 2021 (2021), 5643054  crossref  isi  scopus
    3. I. G. Shandra, S. E. Stepanov, J. Mikes, “On higher-order codazzi tensors on complete Riemannian manifolds”, Ann. Glob. Anal. Geom., 56:3 (2019), 429–442  crossref  mathscinet  isi
    4. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    5. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    6. S. Stepanov, I. Tsyganok, “Conformal Killing $L^2$-forms on complete Riemannian manifolds with nonpositive curvature operator”, J. Math. Anal. Appl., 458:1 (2018), 1–8  crossref  mathscinet  zmath  isi  scopus
    7. S. E. Stepanov, I. I. Tsyganok, T. V. Dmitrieva, “Harmonic and conformally Killing forms on complete Riemannian manifold”, Russian Math. (Iz. VUZ), 61:3 (2017), 44–48  mathnet  crossref  isi
    8. Mikes J., Stepanova E., Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:969
    Russian version PDF:424
    English version PDF:46
    References:101
    First page:51
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025