Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 2, Pages 265–329
DOI: https://doi.org/10.1070/IM2005v069n02ABEH000530
(Mi im634)
 

This article is cited in 25 scientific papers (total in 25 papers)

On the eigenvalues of a “dumb-bell with a thin handle”

R. R. Gadyl'shin

Bashkir State Pedagogical University
References:
Abstract: We consider the Neumann boundary-value problem of finding the small-parameter asymptotics of the eigenvalues and eigenfunctions for the Laplace operator in a singularly perturbed domain consisting of two bounded domains joined by a thin “handle”. The small parameter is the diameter of the cross-section of the handle. We show that as the small parameter tends to zero these eigenvalues converge either to the eigenvalues corresponding to the domains joined or to the eigenvalues of the Dirichlet problem for the Sturm–Liouville operator on the segment to which the thin handle contracts. The main results of this paper are the complete power small-parameter asymptotics of the eigenvalues and the corresponding eigenfunctions and explicit formulae for the first terms of the asymptotics. We consider critical cases generated by the choice of the place where the thin “handle” is joined to the domains, as well as by the multiplicity of the eigenvalues corresponding to the domains joined.
Received: 04.12.2003
Bibliographic databases:
UDC: 517.956
Language: English
Original paper language: Russian
Citation: R. R. Gadyl'shin, “On the eigenvalues of a “dumb-bell with a thin handle””, Izv. Math., 69:2 (2005), 265–329
Citation in format AMSBIB
\Bibitem{Gad05}
\by R.~R.~Gadyl'shin
\paper On the eigenvalues of a ``dumb-bell with a thin handle''
\jour Izv. Math.
\yr 2005
\vol 69
\issue 2
\pages 265--329
\mathnet{http://mi.mathnet.ru/eng/im634}
\crossref{https://doi.org/10.1070/IM2005v069n02ABEH000530}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136257}
\zmath{https://zbmath.org/?q=an:1075.35023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230436900002}
\elib{https://elibrary.ru/item.asp?id=9176277}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645416540}
Linking options:
  • https://www.mathnet.ru/eng/im634
  • https://doi.org/10.1070/IM2005v069n02ABEH000530
  • https://www.mathnet.ru/eng/im/v69/i2/p45
  • This publication is cited in the following 25 articles:
    1. Andrey Amosov, Delfina Gómez, Grigory Panasenko, Maria-Eugenia Pérez-Martínez, “Approximation of eigenvalues and eigenfunctions of the diffusion operator in a domain containing thin tubes by asymptotic domain decomposition method”, Applicable Analysis, 2024, 1  crossref
    2. Chesnel L., Heleine J., Nazarov S.A., “Design of a Mode Converter Using Thin Resonant Ligaments”, Commun. Math. Sci., 20:2 (2022), 425–445  crossref  mathscinet  isi
    3. S. A. Nazarov, “Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides”, Mech. Solids, 57:8 (2022), 1908  crossref
    4. Lucas Chesnel, Jérémy Heleine, Sergei A. Nazarov, “Acoustic passive cloaking using thin outer resonators”, Z. Angew. Math. Phys., 73:3 (2022)  crossref
    5. Bucur D., Henrot A., Michetti M., “Asymptotic Behaviour of the Steklov Spectrum on Dumbbell Domains”, Commun. Partial Differ. Equ., 46:2 (2021), 362–393  crossref  mathscinet  isi
    6. Chesnel L., Nazarov S.A., “Design of An Acoustic Energy Distributor Using Thin Resonant Slits”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 477:2247 (2021), 20200896  crossref  mathscinet  isi  scopus
    7. S. A. Nazarov, L. Chesnel, “Anomalies of acoustic wave propagation in two semi-infinite cylinders connected by a flattened ligament”, Comput. Math. Math. Phys., 61:4 (2021), 646–663  mathnet  mathnet  crossref  crossref  isi  scopus
    8. S. A. Nazarov, “Waveguide with double threshold resonance at a simple threshold”, Sb. Math., 211:8 (2020), 1080–1126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Chesnel L., Nazarov S.A., Taskinen J., “Surface Waves in a Channel With Thin Tunnels and Wells At the Bottom: Non-Reflecting Underwater Topography”, Asymptotic Anal., 118:1-2 (2020), 81–122  crossref  mathscinet  isi
    10. Nazarov S.A., “Anomalies of Acoustic Wave Scattering Near the Cut-Off Points of Continuous Spectrum (a Review)”, Acoust. Phys., 66:5 (2020), 477–494  crossref  isi  scopus
    11. A. L. Delitsyn, “Localization of eigenfunctions of the Laplace operator in a domain with a perforated barrier”, Comput. Math. Math. Phys., 59:6 (2019), 936–941  mathnet  crossref  crossref  isi  elib
    12. Bonnet-Ben Dhia A.-S., Chesnel L., Nazarov S.A., “Perfect Transmission Invisibility For Waveguides With Sound Hard Walls”, J. Math. Pures Appl., 111 (2018), 79–105  crossref  mathscinet  zmath  isi  scopus
    13. Delitsyn A., Grebenkov D.S., “Mode Matching Methods For Spectral and Scattering Problems”, Q. J. Mech. Appl. Math., 71:4 (2018), 537–580  crossref  mathscinet  isi
    14. Arrieta J.M., Ferraresso F., Lamberti P.D., “Spectral Analysis of the Biharmonic Operator Subject to Neumann Boundary Conditions on Dumbbell Domains”, Integr. Equ. Oper. Theory, 89:3 (2017), 377–408  crossref  mathscinet  zmath  isi  scopus
    15. F. L. Bakharev, S. A. Nazarov, “Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions”, Siberian Math. J., 56:4 (2015), 575–592  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    16. Bunoiu R., Cardone G., Nazarov S.A., “Scalar Boundary Value Problems on Junctions of Thin Rods and Plates”, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 48:5 (2014), 1495–1528  crossref  mathscinet  zmath  isi  scopus
    17. S. A. Nazarov, “Asymptotics of eigen-oscillations of a massive elastic body with a thin baffle”, Izv. Math., 77:1 (2013), 87–142  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    18. D. S. Grebenkov, B.-T. Nguyen, “Geometrical Structure of Laplacian Eigenfunctions”, SIAM Rev, 55:4 (2013), 601  crossref  mathscinet  zmath  isi  scopus
    19. Wang Rong-Nian, Chen De-Han, Xiao Ti-Jun, “Abstract fractional Cauchy problems with almost sectorial operators”, J. Differential Equations, 252:1 (2012), 202–235  crossref  mathscinet  isi  elib  scopus
    20. S. A. Nazarov, “Asymptotics of solutions to the spectral elasticity problem for a spatial body with a thin coupler”, Siberian Math. J., 53:2 (2012), 274–290  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:760
    Russian version PDF:290
    English version PDF:39
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025