Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 4, Pages 709–747
DOI: https://doi.org/10.1070/IM2004v068n04ABEH000496
(Mi im496)
 

This article is cited in 15 scientific papers (total in 15 papers)

Closed spans in vector-valued function spaces and their approximative properties

A. A. Vasil'eva

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the structural and approximative properties of closed spans in vector-valued function spaces. We consider the problems of existence and uniqueness of a best approximation of the space by closed spans and the stability of the metric projector.
Received: 27.05.2003
Bibliographic databases:
UDC: 517.982.256
Language: English
Original paper language: Russian
Citation: A. A. Vasil'eva, “Closed spans in vector-valued function spaces and their approximative properties”, Izv. Math., 68:4 (2004), 709–747
Citation in format AMSBIB
\Bibitem{Vas04}
\by A.~A.~Vasil'eva
\paper Closed spans in vector-valued function spaces and their approximative properties
\jour Izv. Math.
\yr 2004
\vol 68
\issue 4
\pages 709--747
\mathnet{http://mi.mathnet.ru/eng/im496}
\crossref{https://doi.org/10.1070/IM2004v068n04ABEH000496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084562}
\zmath{https://zbmath.org/?q=an:1071.41034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224802800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746645284}
Linking options:
  • https://www.mathnet.ru/eng/im496
  • https://doi.org/10.1070/IM2004v068n04ABEH000496
  • https://www.mathnet.ru/eng/im/v68/i4/p75
  • This publication is cited in the following 15 articles:
    1. A. R. Alimov, I. G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Russian Math. Surveys, 74:5 (2019), 775–849  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. I. G. Tsarkov, “Ustoichivost otnositelnogo chebyshëvskogo proektora v poliedralnykh prostranstvakh”, Tr. IMM UrO RAN, 24, no. 4, 2018, 235–245  mathnet  crossref  elib
    3. A. A. Vasil'eva, “Criterion for the existence of a 11-Lipschitz selection from the metric projection onto the set of continuous selections from a multivalued mapping”, J. Math. Sci., 250:3 (2020), 454–462  mathnet  crossref
    4. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    6. A. R. Alimov, “Monotone path-connectedness of RR-weakly convex sets in the space C(Q)C(Q)”, J. Math. Sci., 185:3 (2012), 360–366  mathnet  crossref
    7. A. R. Alimov, V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes”, J. Math. Sci., 191:5 (2013), 599–604  mathnet  crossref
    8. A. R. Alimov, “Local solarity of suns in normed linear spaces”, J. Math. Sci., 197:4 (2014), 447–454  mathnet  crossref
    9. A. R. Alimov, “Bounded strict solar property of strict suns in the space C(Q)C(Q)”, Moscow University Mathematics Bulletin, 68:1 (2013), 14–17  mathnet  crossref
    10. Bednov B.B., “O tochkakh shteinera v prostranstve nepreryvnykh funktsii”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2011, no. 6, 26–31 Steiner points in the space of continuous functions  mathnet  mathscinet  zmath  elib
    11. B. B. Bednov, “Steiner points in the space of continuous functions”, Moscow Univ. Math. Bull., 66:6 (2011), 255  crossref
    12. A. R. Alimov, “Preservation of approximative properties of Chebyshev sets and suns in a plane”, Moscow Univ. Math. Bull., 63:5 (2008), 198  crossref
    13. A. A. Vasil'eva, “An Existence Criterion for a Smooth Function under Constraints”, Math. Notes, 82:3 (2007), 295–308  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space C(Q)C(Q)”, Sb. Math., 197:9 (2006), 1259–1272  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    15. A. R. Alimov, “Preservation of approximative properties of subsets of Chebyshev sets and suns in (n)(n)”, Izv. Math., 70:5 (2006), 857–866  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:624
    Russian version PDF:237
    English version PDF:29
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025