Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 6, Pages 1249–1278
DOI: https://doi.org/10.1070/IM2011v075n06ABEH002571
(Mi im4281)
 

This article is cited in 4 scientific papers (total in 4 papers)

pp-adic evolution pseudo-differential equations and pp-adic wavelets

V. M. Shelkovich

St. Petersburg State University of Architecture and Civil Engineering
References:
Abstract: In the theory of pp-adic evolution pseudo-differential equations (with time variable tR and space variable xQnp), we suggest a method of separation of variables (analogous to the classical Fourier method) which enables us to solve the Cauchy problems for a wide class of such equations. It reduces the solution of evolution pseudo-differential equations to that of ordinary differential equations with respect to the real variable t. Using this method, we solve the Cauchy problems for linear evolution pseudo-differential equations and systems of the first order in t, linear evolution pseudo-differential equations of the second and higher orders in t, and semilinear evolution pseudo-differential equations. We derive a stabilization condition for solutions of linear equations of the first and second orders as t. Among the equations considered are analogues of the heat equation and linear or non-linear Schrödinger equations. The results obtained develop the theory of p-adic pseudo-differential equations and can be used in applications.
Keywords: p-adic pseudo-differential operator, p-adic fractional operator, p-adic wavelet bases, p-adic pseudo-differential equations.
Received: 31.12.2009
Revised: 12.07.2010
Bibliographic databases:
Document Type: Article
UDC: 517.983.37+517.984.57+512.625.5
MSC: Primary 47G30, 42C40, 11F85; Secondary 26A33
Language: English
Original paper language: Russian
Citation: V. M. Shelkovich, “p-adic evolution pseudo-differential equations and p-adic wavelets”, Izv. Math., 75:6 (2011), 1249–1278
Citation in format AMSBIB
\Bibitem{She11}
\by V.~M.~Shelkovich
\paper $p$-adic evolution pseudo-differential equations and $p$-adic wavelets
\jour Izv. Math.
\yr 2011
\vol 75
\issue 6
\pages 1249--1278
\mathnet{http://mi.mathnet.ru/eng/im4281}
\crossref{https://doi.org/10.1070/IM2011v075n06ABEH002571}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918897}
\zmath{https://zbmath.org/?q=an:1238.47032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75.1249S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298497200007}
\elib{https://elibrary.ru/item.asp?id=20358822}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84455192054}
Linking options:
  • https://www.mathnet.ru/eng/im4281
  • https://doi.org/10.1070/IM2011v075n06ABEH002571
  • https://www.mathnet.ru/eng/im/v75/i6/p163
  • This publication is cited in the following 4 articles:
    1. Evdokimov S., “On non-compactly supported p-adic wavelets”, J. Math. Anal. Appl., 443:2 (2016), 1260–1266  crossref  mathscinet  zmath  isi  elib  scopus
    2. Lebedeva E., Skopina M., “Walsh and Wavelet Methods For Differential Equations on the Cantor Group”, J. Math. Anal. Appl., 430:2 (2015), 593–613  crossref  mathscinet  zmath  isi  elib  scopus
    3. V. O. Kompanets, V. B. Laptev, A. A. Makarov, S. V. Pigulskii, E. A. Ryabov, S. V. Chekalin, “Excitation and dissociation of molecules by femtosecond IR laser radiation in the gas phase and on dielectric surfaces”, Quantum Electron., 43:4 (2013), 320–325  mathnet  mathnet  crossref  isi  scopus
    4. Kosyak A.V. Khrennikov A.Yu. Shelkovich V.M., “Pseudodifferential operators on adele rings and wavelet bases”, Dokl. Math., 85:3 (2012), 358–362  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:699
    Russian version PDF:198
    English version PDF:22
    References:97
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025