Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 5, Pages 925–991
DOI: https://doi.org/10.1070/IM2010v074n05ABEH002512
(Mi im4071)
 

This article is cited in 9 scientific papers (total in 9 papers)

Birational geometry of Fano double spaces of index two

A. V. Pukhlikovab

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Liverpool
References:
Abstract: We study birational geometry of Fano varieties realized as double covers σ:VPM, M5, branched over generic smooth hypersurfaces W=W2(M1) of degree 2(M1). We prove that the only structures of a rationally connected fibre space on V are pencil-subsystems of the free linear system |12KV|. The groups of birational and biregular self-maps of V coincide: BirV=AutV.
Keywords: birational map, Fano variety, maximal singularity, rationally connected fibre space, birational self-map.
Received: 26.12.2008
Revised: 29.05.2009
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: 14E05, 14J45, 14J50
Language: English
Original paper language: Russian
Citation: A. V. Pukhlikov, “Birational geometry of Fano double spaces of index two”, Izv. Math., 74:5 (2010), 925–991
Citation in format AMSBIB
\Bibitem{Puk10}
\by A.~V.~Pukhlikov
\paper Birational geometry of Fano double spaces of index two
\jour Izv. Math.
\yr 2010
\vol 74
\issue 5
\pages 925--991
\mathnet{http://mi.mathnet.ru/eng/im4071}
\crossref{https://doi.org/10.1070/IM2010v074n05ABEH002512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2757901}
\zmath{https://zbmath.org/?q=an:1220.14014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..925P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285022600002}
\elib{https://elibrary.ru/item.asp?id=20358762}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049332178}
Linking options:
  • https://www.mathnet.ru/eng/im4071
  • https://doi.org/10.1070/IM2010v074n05ABEH002512
  • https://www.mathnet.ru/eng/im/v74/i5/p45
  • This publication is cited in the following 9 articles:
    1. A. V. Pukhlikov, “Effective results in the theory of birational rigidity”, Russian Math. Surveys, 77:2 (2022), 301–354  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Nathan Chen, David Stapleton, “Higher index Fano varieties with finitely many birational automorphisms”, Compositio Math., 158:11 (2022), 2033  crossref
    3. A. V. Pukhlikov, “Birational geometry of singular Fano double spaces of index two”, Sb. Math., 212:4 (2021), 551–566  mathnet  crossref  crossref  zmath  adsnasa  isi
    4. Pukhlikov A.V., “Birational geometry of Fano hypersurfaces of index two”, Math. Ann., 366:1-2 (2016), 721–782  crossref  mathscinet  zmath  isi  elib  scopus
    5. A. V. Pukhlikov, “Birationally rigid Fano complete intersections. II”, J. Reine Angew. Math., 688 (2014), 209–218  crossref  mathscinet  zmath  isi  scopus
    6. A. V. Pukhlikov, “Birational geometry of higher-dimensional Fano varieties”, Proc. Steklov Inst. Math., 288, suppl. 2 (2015), S1–S150  mathnet  crossref  crossref  isi  elib
    7. A. V. Pukhlikov, “Birationally rigid complete intersections of quadrics and cubics”, Izv. Math., 77:4 (2013), 795–845  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. R. J. Mullany, “Fano Double Spaces with a Big Singular Locus”, Math. Notes, 87:3 (2010), 444–448  mathnet  mathnet  crossref  crossref  isi  scopus
    9. A. V. Pukhlikov, “Birationally rigid varieties. II. Fano fibre spaces”, Russian Math. Surveys, 65:6 (2010), 1083–1171  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:683
    Russian version PDF:197
    English version PDF:21
    References:72
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025