Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 6, Pages 1127–1168
DOI: https://doi.org/10.1070/IM2001v065n06ABEH000365
(Mi im365)
 

This article is cited in 15 scientific papers (total in 15 papers)

Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs

M. V. Karaseva, A. V. Pereskokovb

a Moscow State Institute of Electronics and Mathematics
b Moscow Power Engineering Institute (Technical University)
References:
Abstract: We consider the eigenvalue problem for the three-dimensional Hartree equation in an external field and construct asymptotic (quasi-classical) solutions concentrated near two-dimensional planar discs. The rate of decrease of these solutions along the normal to the disc is determined by the Bogolyubov polaron, and near the edge of the disc it is defined by the Airy analogue of the polaron. To find the related series of eigenvalues, an analogue of the Bohr–Sommerfeld quantization rule is found from which is derived a simpler algebraic equation determining the main terms in the asymptotics of the eigenvalues.
Received: 13.03.1998
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs”, Izv. Math., 65:6 (2001), 1127–1168
Citation in format AMSBIB
\Bibitem{KarPer01}
\by M.~V.~Karasev, A.~V.~Pereskokov
\paper Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~II. Localization in planar discs
\jour Izv. Math.
\yr 2001
\vol 65
\issue 6
\pages 1127--1168
\mathnet{http://mi.mathnet.ru/eng/im365}
\crossref{https://doi.org/10.1070/IM2001v065n06ABEH000365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1892904}
\zmath{https://zbmath.org/?q=an:1020.81017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746770465}
Linking options:
  • https://www.mathnet.ru/eng/im365
  • https://doi.org/10.1070/IM2001v065n06ABEH000365
  • https://www.mathnet.ru/eng/im/v65/i6/p57
  • This publication is cited in the following 15 articles:
    1. A. V. Pereskokov, “Asymptotic Solutions to the Hartree Equation Near a Sphere. Asymptotics of Self-Consistent Potentials”, J Math Sci, 276:1 (2023), 154  crossref
    2. A. V. Pereskokov, “Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 209:3 (2021), 1782–1797  mathnet  crossref  crossref  adsnasa  isi  elib
    3. Shapovalov A.V., Kulagin A.E., Trifonov A.Yu., “The Gross-Pitaevskii Equation With a Nonlocal Interaction in a Semiclassical Approximation on a Curve”, Symmetry-Basel, 12:2 (2020), 201  crossref  isi
    4. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, Theoret. and Math. Phys., 199:3 (2019), 864–877  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator”, Math. Notes, 101:6 (2017), 1009–1022  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. V. Pereskokov, “Semiclassical Asymptotics of Solutions to Hartree Type Equations Concentrated on Segments”, J Math Sci, 226:4 (2017), 462  crossref
    7. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 187:1 (2016), 511–524  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle”, Theoret. and Math. Phys., 183:1 (2015), 516–526  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters”, Theoret. and Math. Phys., 178:1 (2014), 76–92  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. Lipskaya A.V., Pereskokov A.V., “Asimptoticheskie resheniya odnomernogo uravneniya khartri s negladkim potentsialom vzaimodeistviya. asimptotika kvantovykh srednikh”, Vestnik moskovskogo energeticheskogo instituta, 2012, no. 6, 105–116 Asymptotic solution of the one-dimensional hartree equation with the non-smooth interaction potential. asymtotics of quantum averages  elib
    11. Lipskaya A.V., Pereskokov A.V., “Ob asimptoticheskikh resheniyakh uravneniya tipa khartri s potentsialom vzaimodeistviya yukavy, sosredotochennykh v share”, Vestnik Moskovskogo energeticheskogo instituta, 2011, no. 6, 30–38 On asymptotic solutions concentrated in a ball of the hartree-type equation with the yukawa interaction potential  elib
    12. V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation”, Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S123–S128  mathnet  mathscinet  zmath  elib
    14. V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations”, Theoret. and Math. Phys., 130:3 (2002), 391–418  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. A. V. Pereskokov, “Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments”, Theoret. and Math. Phys., 131:3 (2002), 775–790  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:629
    Russian version PDF:276
    English version PDF:33
    References:101
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025