Abstract:
We establish that a mathematical model of the distributed van der Pol self-oscillator, which is a non-linear boundary-value problem of hyperbolic type, exhibits the buffer phenomenon, which means that the system can have any given number of stable cycles if its parameters are
properly chosen.
Citation:
A. Yu. Kolesov, N. Kh. Rozov, “The buffer phenomenon in a mathematical model of the van der Pol self-oscillator with distributed parameters”, Izv. Math., 65:3 (2001), 485–501
\Bibitem{KolRoz01}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper The buffer phenomenon in a~mathematical model of the van der Pol self-oscillator with distributed parameters
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 485--501
\mathnet{http://mi.mathnet.ru/eng/im336}
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853366}
\zmath{https://zbmath.org/?q=an:0994.35015}
\elib{https://elibrary.ru/item.asp?id=13859250}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746830897}
Linking options:
https://www.mathnet.ru/eng/im336
https://doi.org/10.1070/IM2001v065n03ABEH000336
https://www.mathnet.ru/eng/im/v65/i3/p67
This publication is cited in the following 6 articles: