Abstract:
In this paper, non-degenerate (3,3)-quadrics are considered. A list of quadrics with non-linear automorphisms is obtained up to equivalence. All nullquadrics of codimension 3
in C6 are determined. We give an example of a quadric with a non-linear automorphism not representable as a Poincare automorphism.
\Bibitem{Pal95}
\by N.~F.~Palinchak
\paper Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms
\jour Izv. Math.
\yr 1995
\vol 59
\issue 3
\pages 597--617
\mathnet{http://mi.mathnet.ru/eng/im25}
\crossref{https://doi.org/10.1070/IM1995v059n03ABEH000025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347081}
\zmath{https://zbmath.org/?q=an:0902.32002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TJ19700006}
Linking options:
https://www.mathnet.ru/eng/im25
https://doi.org/10.1070/IM1995v059n03ABEH000025
https://www.mathnet.ru/eng/im/v59/i3/p159
This publication is cited in the following 5 articles:
V. K. Beloshapka, “On Exceptional Quadrics”, Russ. J. Math. Phys., 29:1 (2022), 11
Wu Q., “On holomorphic automorphisms of a class of non-homogeneous rigid hypersurfaces in a", (N+1)”, Chinese Annals of Mathematics Series B, 31:2 (2010), 201–210
V. K. Beloshapka, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems”, Russian Math. Surveys, 57:1 (2002), 1–41
E. G. Anisova, “Quadrics of codimension 4 in $\mathbb C^7$ and their automorphisms”, Math. Notes, 64:6 (1998), 697–703
E. G. Anisova, “Null-quadrics of codimension 4 in $\mathbb C^7$”, Math. Notes, 62:5 (1997), 549–556