Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1970, Volume 4, Issue 6, Pages 1225–1249
DOI: https://doi.org/10.1070/IM1970v004n06ABEH000954
(Mi im2468)
 

This article is cited in 8 scientific papers (total in 8 papers)

Preservation of an invariant torus under perturbation

A. M. Samoilenko
References:
Abstract: There is presented a new approach to the theory of perturbation of invariant toroidal manifolds of dynamical systems related to use of Green's functions for a linearized problem. This approach permits the presentation, from a single and general point of view, of the theory of perturbation of smooth as well as of nondifferentiable invariant manifolds of dynamical systems, and also permits the proof of new theorems on the existence of such manifolds.
Received: 30.05.1969
Bibliographic databases:
UDC: 517.9
MSC: Primary 34C35, 54H20, 58F10, 70K20; Secondary 28A65
Language: English
Original paper language: Russian
Citation: A. M. Samoilenko, “Preservation of an invariant torus under perturbation”, Math. USSR-Izv., 4:6 (1970), 1225–1249
Citation in format AMSBIB
\Bibitem{Sam70}
\by A.~M.~Samoilenko
\paper Preservation of an invariant torus under perturbation
\jour Math. USSR-Izv.
\yr 1970
\vol 4
\issue 6
\pages 1225--1249
\mathnet{http://mi.mathnet.ru/eng/im2468}
\crossref{https://doi.org/10.1070/IM1970v004n06ABEH000954}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=299910}
\zmath{https://zbmath.org/?q=an:0224.34043}
Linking options:
  • https://www.mathnet.ru/eng/im2468
  • https://doi.org/10.1070/IM1970v004n06ABEH000954
  • https://www.mathnet.ru/eng/im/v34/i6/p1219
  • This publication is cited in the following 8 articles:
    1. V. L. Kulyk, H. M. Kulyk, N. V. Stepanenko, “On Some Constructions of Regular Linear Extensions of Dynamical Systems on a Torus”, J Math Sci, 278:6 (2024), 1013  crossref
    2. I. M. Hrod, V. L. Kulyk, “Construction of Lyapunov Functions in the Form of Pencils of Quadratic Forms”, J Math Sci, 243:2 (2019), 183  crossref
    3. A. M. Samoilenko, “Smoothness in the parameter of an invariant torus of a quasilinear system of differential equations”, Ukr Math J, 38:5 (1987), 516  crossref
    4. A. M. Samoilenko, V. L. Kulik, “On the existence of the Green function of the problem of the invariant torus”, Ukr Math J, 27:3 (1976), 279  crossref
    5. V. L. Golets, “Asymptotic integration of certain weakly nonlinear systems”, Ukr Math J, 24:3 (1973), 331  crossref
    6. Yu. A. Mitropol'skii, A. M. Samoilenko, “Quasi-periodic oscillations in linear systems”, Ukr Math J, 24:2 (1973), 144  crossref
    7. A. M. Samoilenko, “On the reduction to canonical form of a dynamical system in the neighborhood of a smooth invariant torus”, Math. USSR-Izv., 6:1 (1972), 211–234  mathnet  crossref  mathscinet  zmath
    8. V. L. Golets, “Perturbation of a stable invariant torus of a dynamical system”, Ukr Math J, 23:1 (1972), 117  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:467
    Russian version PDF:154
    English version PDF:20
    References:68
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025