Abstract:
For every algebraic number α of degree n⩾3 there exist effective positive constants a and C such that for any rational integers q>0 and p we have
|α−pq|>Cqa−n.
We also derive an effective boundary of the type C1ma1 for the solutions of the Diophantine equation f(x,y)=m, where f is a form of degree ⩾3.
\Bibitem{Fel71}
\by N.~I.~Fel'dman
\paper An effective refinement of the exponent in Liouville's theorem
\jour Math. USSR-Izv.
\yr 1971
\vol 5
\issue 5
\pages 985--1002
\mathnet{http://mi.mathnet.ru/eng/im2114}
\crossref{https://doi.org/10.1070/IM1971v005n05ABEH001130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=289418}
\zmath{https://zbmath.org/?q=an:0237.10018}
Linking options:
https://www.mathnet.ru/eng/im2114
https://doi.org/10.1070/IM1971v005n05ABEH001130
https://www.mathnet.ru/eng/im/v35/i5/p973
This publication is cited in the following 18 articles:
Amoroso F., Zannier U., “Irrationality Measures For Cubic Irrationals Whose Conjugates Lie on a Curve”, Math. Z., 299:3-4 (2021), 1767–1788
Yurii Valentinovich Nesterenko, “Naum Ilich Feldman i teoriya transtsendentnykh chisel (k 100-letiyu so dnya rozhdeniya)”, Chebyshevskii Sbornik, 20:3 (2020), 7
Bugeaud Y., “Linear Forms in Logarithms and Applications”, Linear Forms in Logarithms and Applications, Irma Lectures in Mathematics and Theoretical Physics, 28, Eur. Math. Soc., 2018, 1–224
Paula B. Cohen, Developments in Mathematics, 10, Number Theory and Modular Forms, 2003, 367
E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers”, Izv. Math., 62:4 (1998), 723–772
N. M. Korobov, Yu. V. Nesterenko, A. B. Shidlovskii, “Naum Il'ich Feld'man (obituary)”, Russian Math. Surveys, 50:6 (1995), 1247–1252
H. P. Barendregt, I. V. Dolgachev, G. Rozenberg, A. Salomaa, A. P. Soldatov, A. F. Leont'ev, V. F. Emel'yanov, I. P. Egorov, N. Kh. Rozov, V. V. Rumyantsev, I. B. Vapnyarskiǐ, L. D. Kudryavtsev, M. K. Samarin, I. V. Proskuryakov, V. M. Millionshchikov, N. N. Vil'yams, S. A. Stepanov, S. M. Voronin, I. V. Volovich, D. V. Anosov, D. D. Sokolov, P. K. Suetin, Yu. A. Brychkov, A. P. Prudnikov, A. B. Ivanov, M. I. Voǐtsekhovskiǐ, V. I. Bityutskov, V. A. Chuyanov, G. V. Kuz'mina, H. Maassen, E. D. Solomentsev, E. V. Shikin, A. V. Prokhorov, E. G. D'yakonov, M. V. Fedoryuk, M. A. Shubin, V. T. Bazylev, N. S. Zhavrid, V. V. Okhrimenko, Yu. M. Davydov, B. M. Bredikhin, V. V. Parail, V. I. Danilov, V. M. Mikheev, L. A. Skornyakov, N. G. Ushakov, V. M. Kopytov, T. S. Fofanova, V. A. Zorich, V. L. Popov, Yu. V. Prohorov, V. E. Plisko, V. V. Petrov, V. I. Nechaev, A. A. Bukhshtab, M. S. Nikulin, L. N. Bol'shev, K. I. Oskolkov, B. I. Golubov, V. V. , Encyclopaedia of Mathematics, 1995, 443
A. G. El'kin, M. G. M. van Doorn, A. K. Gushchin, L. D. Kudryavtsev, V. V. Rumyantsev, V. I. Sobolev, B. A. Efimov, N. Kh. Rozov, V. T. Bazylev, I. A. Kvasnikov, B. I. Golubov, A. A. Konyushkov, L. N. Eshukov, P. P. Korovkin, A. V. Efimov, A. A. Zakharov, S. M. Vorazhin, Yu. N. Subbotin, A. L. Onishchik, D. P. Kostomarov, N. M. Nagornyǐ, V. E. Plisko, N. M. Khalfina, S. A. Stepanov, M. S. Nikulin, S. I. Adyan, P. S. Soltan, A. V. Zabrodin, L. A. Bokut', S. Yu. Maslov, G. E. Mints, E. M. Chirka, M. V. Fedoryuk, N. K. Nikol'skiǐ, B. S. Pavlov, A. L. Shmel'kin, A. V. Arkhangel'skiǐ, A. B. Bakushinskiǐ, D. A. Ponomarev, I. V. Dolgachev, A. A. Boyarkin, A. V. Mikhalev, M. I. Voǐtsekhovskiǐ, A. V. Prokhorov, L. E. Reǐzin', A. M. Il'in, G. N. Dyubin, D. P. Zhelobenko, V. P. Chistyakov, A. V. Khokhlov, V. A. Dushskiǐ, M. Sh. Farber, E. D. Solomentsev, V. D. Kukin, A. A. Mal'tsev, M. A. Shtan'ko, T. P., Encyclopaedia of Mathematics, 1995, 79
M. Hazewinkel, Encyclopaedia of Mathematics, 1994, 2
Ben Lichtin, “On the average period of an elliptic curve”, Duke Math. J., 67:2 (1992)
M. Hazewinkel, Encyclopaedia of Mathematics, 1990, 321
H. Luckhardt, “Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken”, J. symb. log, 54:01 (1989), 234
M. Hazewinkel, Encyclopaedia of Mathematics, 1989, 1
Enrico Bombieri, Analytic Number Theory and Diophantine Problems, 1987, 15
Joseph H. Silverman, Progress in Mathematics, 26, Number Theory Related to Fermat's Last Theorem, 1982, 263
Joseph H. Silverman, “Integer points and the rank of Thue elliptic curves”, Invent Math, 66:3 (1982), 395
V. G. Sprindzhuk, “Achievements and problems in Diophantine approximation theory”, Russian Math. Surveys, 35:4 (1980), 1–80
S. V. Kotov, V. G. Sprindzhuk, “The Thue–Mahler equation in a relative field and approximation of algebraic numbers by algebraic numbers”, Math. USSR-Izv., 11:4 (1977), 677–707