Typesetting math: 100%
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1975, Volume 9, Issue 6, Pages 1297–1321
DOI: https://doi.org/10.1070/IM1975v009n06ABEH001522
(Mi im2096)
 

This article is cited in 14 scientific papers (total in 14 papers)

Convergence of series connected with stationary sequences

V. F. Gaposhkin
References:
Abstract: Convergence almost everywhere of series akξk is studied, where {ξk} is a wide-sense stationary sequence (or a quasi-stationary sequence). Sufficient conditions are obtained for convergence of the series, which are also necessary in the class of all sequences {ξk} having a given rate of decrease of the correlation function.
Analogous results are also valid for integrals of the type 1a(t)ξ(t)dt where ξ(t) is a wide-sense stationary process.
Bibliography: 12 titles.
Received: 13.05.1974
Bibliographic databases:
UDC: 517.5
MSC: Primary 60G10; Secondary 42A60
Language: English
Original paper language: Russian
Citation: V. F. Gaposhkin, “Convergence of series connected with stationary sequences”, Math. USSR-Izv., 9:6 (1975), 1297–1321
Citation in format AMSBIB
\Bibitem{Gap75}
\by V.~F.~Gaposhkin
\paper Convergence of series connected with stationary sequences
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 6
\pages 1297--1321
\mathnet{http://mi.mathnet.ru/eng/im2096}
\crossref{https://doi.org/10.1070/IM1975v009n06ABEH001522}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=402880}
\zmath{https://zbmath.org/?q=an:0326.60038}
Linking options:
  • https://www.mathnet.ru/eng/im2096
  • https://doi.org/10.1070/IM1975v009n06ABEH001522
  • https://www.mathnet.ru/eng/im/v39/i6/p1366
  • This publication is cited in the following 14 articles:
    1. A. G. Kachurovskii, I. V. Podvigin, A. J. Khakimbaev, “Uniform Convergence on Subspaces in von Neumann Ergodic Theorem with Discrete Time”, Math. Notes, 113:5 (2023), 680–693  mathnet  crossref  crossref  mathscinet
    2. Arkady Tempelman, “Randomized consistent statistical inference for random processes and fields”, Stat Inference Stoch Process, 25:3 (2022), 599  crossref
    3. A. G. Kachurovskii, I. V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Moscow Math. Soc., 77 (2016), 1–53  mathnet  crossref  elib
    4. V. V. Sedalishchev, “Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems”, Siberian Math. J., 55:2 (2014), 336–348  mathnet  crossref  mathscinet  isi
    5. A. G. Kachurovskii, V. V. Sedalishchev, “On the Constants in the Estimates of the Rate of Convergence in the Birkhoff Ergodic Theorem”, Math. Notes, 91:4 (2012), 582–587  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. V. V. Sedalishchev, “Constants in the estimates of the convergence rate in the Birkhoff ergodic theorem with continuous time”, Siberian Math. J., 53:5 (2012), 882–888  mathnet  crossref  mathscinet  isi
    7. A. G. Kachurovskii, V. V. Sedalishchev, “Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems”, Sb. Math., 202:8 (2011), 1105–1125  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. N. A. Dzhulaǐ, A. G. Kachurovskiǐ, “Constants in the estimates of the rate of convergence in von Neumann's ergodic theorem with continuous time”, Siberian Math. J., 52:5 (2011), 824–835  mathnet  crossref  mathscinet  isi
    9. A. G. Kachurovskii, V. V. Sedalishchev, “On the Constants in the Estimates of the Rate of Convergence in von Neumann's Ergodic Theorem”, Math. Notes, 87:5 (2010), 720–727  mathnet  crossref  crossref  mathscinet  isi  elib
    10. P. A. Yaskov, “A Generalization of the Menshov–Rademacher Theorem”, Math. Notes, 86:6 (2009), 861–872  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Guy Cohen, Michael Lin, Characteristic Functions, Scattering Functions and Transfer Functions, 2009, 77  crossref
    12. Guy Cohen, Michael Lin, “Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory”, Isr J Math, 148:1 (2005), 41  crossref  mathscinet  zmath  isi  elib
    13. V. F. Gaposhkin, “Estimates of the Entropy of the Set of Means for Some Classes of Stationary and Quasistationary Sequences”, Math. Notes, 78:1 (2005), 47–52  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    14. V. F. Gaposhkin, “Some Examples of the Problem of εε-Deviatations for Stationary Sequences”, Theory Probab Appl, 46:2 (2002), 341  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:550
    Russian version PDF:293
    English version PDF:39
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025