Abstract:
Let X and U be locally convex spaces, φ(x,u) a proper convex lower semicontinuous functional on X×U and t=t(u)⩾inf{φ(x,u):x∈X}. This paper gives conditions for the multivalued mapping
Φt:u∈U→Φt(u)={x∈X:φ(x,u)⩽t}
to be uniformly continuous and satisfy a Lipschitz condition, and determines the relation of Φt with other multivalued mappings, in particular, with a metric projection. On the basis of
the functional conjugate to φ a mapping conjugate to Φt is introduced and a condition for its upper semicontinuity is presented. The problem of minimizing a homogeneous convex functional on a convex set is considered.
Bibliography: 21 titles.
Citation:
V. I. Berdyshev, “Continuity of a multivalued mapping connected with the problem of minimizing a functional”, Math. USSR-Izv., 16:3 (1981), 431–456
\Bibitem{Ber80}
\by V.~I.~Berdyshev
\paper Continuity of a~multivalued mapping connected with the problem of minimizing a~functional
\jour Math. USSR-Izv.
\yr 1981
\vol 16
\issue 3
\pages 431--456
\mathnet{http://mi.mathnet.ru/eng/im1696}
\crossref{https://doi.org/10.1070/IM1981v016n03ABEH001317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=582157}
\zmath{https://zbmath.org/?q=an:0468.90084|0443.90100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MK41200001}
Linking options:
https://www.mathnet.ru/eng/im1696
https://doi.org/10.1070/IM1981v016n03ABEH001317
https://www.mathnet.ru/eng/im/v44/i3/p483
This publication is cited in the following 12 articles:
M. V. Balashov, “Lipschitz continuity of the metric projection operator and convergence of gradient methods”, Sb. Math., 215:4 (2024), 494–510
A. R. Alimov, K. S. Ryutin, I. G. Tsar'kov, “Existence, uniqueness, and stability of best and near-best approximations”, Russian Math. Surveys, 78:3 (2023), 399–442
R. A. Khachatryan, “O suschestvovanii nepreryvnykh selektsii mnogoznachnogo otobrazheniya, svyazannogo s zadachei minimizatsii funktsionala”, Vestnik rossiiskikh universitetov. Matematika, 27:139 (2022), 284–299
Maxim V. Balashov, “Stability of Minimization Problems and the Error Bound Condition”, Set-Valued Var. Anal, 30:3 (2022), 1061
A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77
A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730
Balashov, MV, “Uniform convexity and the splitting problem for selections”, Journal of Mathematical Analysis and Applications, 360:1 (2009), 307
P. V. Al'brecht, “Differentiable operators of nearly best approximation”, Izv. Math., 63:4 (1999), 631–647
A. V. Marinov, “The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness”, Izv. Math., 62:2 (1998), 313–318
M. B. Lignola, J. Morgan, “Topological existence and stability for stackelberg problems”, J Optim Theory Appl, 84:1 (1995), 145
A. V. Marinov, “Stability estimates of continuous selections for metric almost-projections”, Math. Notes, 55:4 (1994), 367–371