Abstract:
This paper contains proofs of some previously announced theorems on infinitedimensional algebraic groups, and, in particular, on the structure of the group of automorphisms of an affine space as an infinite-dimensional algebraic group.
Bibliography: 9 titles.
This publication is cited in the following 42 articles:
Vasyl USTIMENKO, Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1, 2024, 205
Lucas Fresse, Ivan Penkov, “On Homogeneous Spaces for Diagonal Ind-Groups”, Transformation Groups, 2024
Dan Kucerovsky, Contemporary Mathematics, 798, Advances in Functional Analysis and Operator Theory, 2024, 221
V. V. Kikteva, “On the connectedness of the automorphism group of an affine toric variety”, Sb. Math., 215:10 (2024), 1351–1373
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. I. Introduction”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 213, VINITI RAN, M., 2022, 110–144
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. II. Quantization proof of Bergman's centralizer theorem”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 214, VINITI RAN, M., 2022, 107–126
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. III. Avtomorfizmy, topologiya popolneniya i approksimatsiya”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 215, VINITI RAN, M., 2022, 95–128
Sergey A. Gaifullin, “Orbits of the Automorphism Group of Horospherical Varieties, and Divisor Class Group”, Proc. Steklov Inst. Math., 318 (2022), 38–44
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. IV. Approksimatsii polinomialnymi simplektomorfizmami”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 216, VINITI RAN, M., 2022, 153–171
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. V. Gipoteza Yakobiana i problemy tipa Shpekhta i Bernsaida”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 217, VINITI RAN, M., 2022, 107–137
Conformal Blocks, Generalized Theta Functions and the Verlinde Formula, 2021, 328
V. L. Popov, “Three plots about Cremona groups”, Izv. Math., 83:4 (2019), 830–859
S. O. Gorchinskiy, Vik. S. Kulikov, A. N. Parshin, V. L. Popov, “Igor Rostislavovich Shafarevich and His Mathematical Heritage”, Proc. Steklov Inst. Math., 307 (2019), 1–21
Kanel-Belov A., Yu J.-T., Elishev A., “On the Augmentation Topology of Automorphism Groups of Affine Spaces and Algebras”, Int. J. Algebr. Comput., 28:8, SI (2018), 1449–1485
Marat Gizatullin, “Two examples of affine homogeneous varieties”, European Journal of Mathematics, 4:3 (2018), 1035
Kovalenko S. Perepechko A. Zaidenberg M., “On Automorphism Groups of Affine Surfaces”, Algebraic Varieties and Automorphism Groups, Advanced Studies in Pure Mathematics, 75, ed. Masuda K. Kishimoto T. Kojima H. Miyanishi M. Zaidenberg M., Math Soc Japan, 2017, 207–286
Trans. Moscow Math. Soc., 78 (2017), 171–186
Kraft H., Russell P., “Families of Group Actions, Generic Isotriviality, and Linearization”, Transform. Groups, 19:3 (2014), 779–792
Vladimir Lin, Mikhail Zaidenberg, Springer Proceedings in Mathematics & Statistics, 79, Automorphisms in Birational and Affine Geometry, 2014, 431
Ronen Peretz, “On the Structure of the Semigroup of Entire Étale Mappings”, Complex Anal. Oper. Theory, 2013