Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1986, Volume 27, Issue 3, Pages 575–592
DOI: https://doi.org/10.1070/IM1986v027n03ABEH001194
(Mi im1402)
 

This article is cited in 28 scientific papers (total in 28 papers)

Homotopy theory of coalgebras

V. A. Smirnov
References:
Abstract: This paper makes a study of operads and of coalgebras over operads. Certain operads EnEn and EE are defined, constituting the algebraic analogues of the "little nn-cube" operads; it is then shown that the singular chain complex C(X;R)C(X;R) of a topological space XX is a coalgebra over the operad EE, and that this structure completely determines the weak homotopy type of the space.
Bibliography: 26 titles.
Received: 04.11.1983
Bibliographic databases:
UDC: 513.836
MSC: Primary 55P15, 55P47; Secondary 55U35, 18G30
Language: English
Original paper language: Russian
Citation: V. A. Smirnov, “Homotopy theory of coalgebras”, Math. USSR-Izv., 27:3 (1986), 575–592
Citation in format AMSBIB
\Bibitem{Smi85}
\by V.~A.~Smirnov
\paper Homotopy theory of coalgebras
\jour Math. USSR-Izv.
\yr 1986
\vol 27
\issue 3
\pages 575--592
\mathnet{http://mi.mathnet.ru/eng/im1402}
\crossref{https://doi.org/10.1070/IM1986v027n03ABEH001194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=816858}
\zmath{https://zbmath.org/?q=an:0612.55012|0595.55008}
Linking options:
  • https://www.mathnet.ru/eng/im1402
  • https://doi.org/10.1070/IM1986v027n03ABEH001194
  • https://www.mathnet.ru/eng/im/v49/i6/p1302
  • This publication is cited in the following 28 articles:
    1. Imen Rjaiba, “Operad Structures on the Species Composition of Two Operads”, Appl Categor Struct, 33:1 (2025)  crossref
    2. Ricardo Campos, Thomas Willwacher, “Operadic torsors”, Journal of Algebra, 458 (2016), 71  crossref
    3. S. V. Lapin, “Chain Realization of Differential Modules with $\infty$-Simplicial Faces and the $B$-Construction over $A_\infty$-Algebras”, Math. Notes, 98:1 (2015), 111–129  mathnet  crossref  crossref  mathscinet  isi  elib
    4. S. V. Lapin, “Extension of the Multiplication Operation in $E_\infty$-Algebras to an $A_\infty$-Morphism of $E_\infty$-Algebras and Cartan Objects in the Category of May Algebras”, Math. Notes, 89:5 (2011), 672–688  mathnet  crossref  crossref  mathscinet  isi
    5. André Hirschowitz, Marco Maggesi, “Modules over monads and initial semantics”, Information and Computation, 208:5 (2010), 545  crossref
    6. S. V. Lapin, “Multiplicative $A_\infty$-structure in terms of spectral sequences of fibrations”, J. Math. Sci., 164:1 (2010), 95–118  mathnet  crossref  mathscinet
    7. S. V. Lapin, “$D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules”, J. Math. Sci., 159:6 (2009), 819–832  mathnet  crossref  mathscinet  zmath  elib
    8. S. V. Lapin, “$D_\infty$-differential $E_\infty$-algebras and spectral sequences of fibrations”, Sb. Math., 198:10 (2007), 1379–1406  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. André Hirschowitz, Marco Maggesi, Lecture Notes in Computer Science, 4576, Logic, Language, Information and Computation, 2007, 218  crossref
    10. M.A.. Mandell, “Cochains and homotopy type”, Publ.math.IHES, 103:1 (2006), 213  crossref
    11. S. V. Lapin, “$D_\infty$-differential $E_\infty$-algebras and multiplicative spectral sequences”, Sb. Math., 196:11 (2005), 1627–1658  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. V. A. Smirnov, “Homotopy Theories of Algebras over Operads”, Math. Notes, 78:2 (2005), 251–257  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    13. S. V. Lapin, “$(DA)_\infty$-modules over $(DA)_\infty$-algebras and spectral sequences”, Izv. Math., 66:3 (2002), 543–568  mathnet  crossref  crossref  mathscinet  zmath  elib
    14. V. A. Smirnov, “The $A_\infty$-structures and differentials of the Adams spectral sequence”, Izv. Math., 66:5 (2002), 1057–1086  mathnet  crossref  crossref  mathscinet  zmath
    15. S. V. Lapin, “$D_\infty$-differential $A_\infty$-algebras and spectral sequences”, Sb. Math., 193:1 (2002), 119–142  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. M.A.. Mandell, “E∞ algebras and p-adic homotopy theory”, Topology, 40:1 (2001), 43  crossref
    17. S. N. Tronin, O. A. Kopp, “Matrix linear operads”, Russian Math. (Iz. VUZ), 44:6 (2000), 50–59  mathnet  mathscinet  zmath  elib
    18. V. A. Smirnov, “Homotopy type and $A_\infty$-group structure”, Sb. Math., 189:10 (1998), 1563–1572  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. V. A. Smirnov, “Lie algebras over operads and their applications in homotopy theory”, Izv. Math., 62:3 (1998), 549–580  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. Mikhail A. Batanin, “Homotopy coherent category theory and A∞-structures in monoidal categories”, Journal of Pure and Applied Algebra, 123:1-3 (1998), 67  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:507
    Russian version PDF:259
    English version PDF:29
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025