Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1988, Volume 30, Issue 2, Pages 337–351
DOI: https://doi.org/10.1070/IM1988v030n02ABEH001016
(Mi im1298)
 

This article is cited in 3 scientific papers (total in 3 papers)

A new estimate for a trigonometric integral of I. M. Vinogradov

O. V. Tyrina
References:
Abstract: This paper is devoted to refinements of I. M. Vinogradov's theorem on the mean. New estimates are obtained for the mean values of trigonometric sums which are effective on the domain of admissible variation of the parameters.
Bibliography: 28 titles.
Received: 27.06.1986
Bibliographic databases:
UDC: 511
MSC: Primary 11L15, 11L40; Secondary 11L03, 11S50, 11P05
Language: English
Original paper language: Russian
Citation: O. V. Tyrina, “A new estimate for a trigonometric integral of I. M. Vinogradov”, Math. USSR-Izv., 30:2 (1988), 337–351
Citation in format AMSBIB
\Bibitem{Tyr87}
\by O.~V.~Tyrina
\paper A~new estimate for a~trigonometric integral of I.\,M.~Vinogradov
\jour Math. USSR-Izv.
\yr 1988
\vol 30
\issue 2
\pages 337--351
\mathnet{http://mi.mathnet.ru/eng/im1298}
\crossref{https://doi.org/10.1070/IM1988v030n02ABEH001016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=897002}
\zmath{https://zbmath.org/?q=an:0638.10038|0618.10035}
Linking options:
  • https://www.mathnet.ru/eng/im1298
  • https://doi.org/10.1070/IM1988v030n02ABEH001016
  • https://www.mathnet.ru/eng/im/v51/i2/p363
  • This publication is cited in the following 3 articles:
    1. Kevin Ford, T.D.. Wooley, “On Vinogradov’s mean value theorem: strongly diagonal behaviour via efficient congruencing”, Acta Math, 213:2 (2014), 199  crossref
    2. S. N. Preobrazhenskii, “New Estimate in Vinogradov's Mean-Value Theorem”, Math. Notes, 89:2 (2011), 277–290  mathnet  crossref  crossref  mathscinet  isi
    3. Trevor D. Wooley, “Quasi-diagonal behaviour in certain mean value theorems of additive number theory”, J. Amer. Math. Soc., 7:1 (1994), 221  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:147
    English version PDF:17
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025