Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 33, Issue 3, Pages 575–595
DOI: https://doi.org/10.1070/IM1989v033n03ABEH000857
(Mi im1229)
 

This article is cited in 8 scientific papers (total in 8 papers)

K3 surfaces over number fields and l-adic representations

S. G. Tankeev
References:
Abstract: The Tate conjecture on algebraic cycles is proved for any algebraic K3 surface over a number field. If the canonical representation of the Hodge group in the Q-lattice of transcendental cohomology classes is absolutely irreducible, then the Mumford–Tate conjecture is true for such a K3 surface.
Bibliography: 18 titles.
Received: 14.04.1987
Bibliographic databases:
UDC: 513.6
MSC: Primary 14J28, 14G13, 11G35; Secondary 14G25, 14K15
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “K3 surfaces over number fields and l-adic representations”, Math. USSR-Izv., 33:3 (1989), 575–595
Citation in format AMSBIB
\Bibitem{Tan88}
\by S.~G.~Tankeev
\paper K3 surfaces over number fields and $l$-adic representations
\jour Math. USSR-Izv.
\yr 1989
\vol 33
\issue 3
\pages 575--595
\mathnet{http://mi.mathnet.ru/eng/im1229}
\crossref{https://doi.org/10.1070/IM1989v033n03ABEH000857}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=984218}
\zmath{https://zbmath.org/?q=an:0679.14019}
Linking options:
  • https://www.mathnet.ru/eng/im1229
  • https://doi.org/10.1070/IM1989v033n03ABEH000857
  • https://www.mathnet.ru/eng/im/v52/i6/p1252
  • This publication is cited in the following 8 articles:
    1. Burt Totaro, “Recent progress on the Tate conjecture”, Bull. Amer. Math. Soc., 54:4 (2017), 575  crossref
    2. S. G. Tankeev, “On the Brauer group of an arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. S. G. Tankeev, “On the Brauer group of an arithmetic scheme”, Izv. Math., 65:2 (2001), 357–388  mathnet  crossref  crossref  mathscinet  zmath  elib
    4. S. G. Tankeev, “On the Brauer group”, Izv. Math., 64:4 (2000), 787–806  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. S. G. Tankeev, “On weights of the l-adic representation and arithmetic of Frobenius eigenvalues”, Izv. Math., 63:1 (1999), 181–218  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. S. G. Tankeev, “Surfaces of type K3 over number fields and the Mumford–Tate conjecture. II”, Izv. Math., 59:3 (1995), 619–646  mathnet  crossref  mathscinet  zmath  isi
    7. S. G. Tankeev, “Kuga–Satake abelian varieties and l-adic representations”, Math. USSR-Izv., 39:1 (1992), 855–867  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. S. G. Tankeev, “K3 surfaces over number fields and the Mumford–Tate conjecture”, Math. USSR-Izv., 37:1 (1991), 191–208  mathnet  crossref  mathscinet  zmath  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:430
    Russian version PDF:114
    English version PDF:40
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025