\Bibitem{Sha90}
\by B.~Z.~Shapiro
\paper Spaces of linear differential equatios, and flag manifolds
\jour Math. USSR-Izv.
\yr 1991
\vol 36
\issue 1
\pages 183--197
\mathnet{http://mi.mathnet.ru/eng/im1111}
\crossref{https://doi.org/10.1070/IM1991v036n01ABEH001962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1044054}
\zmath{https://zbmath.org/?q=an:0719.34059|0702.34032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..36..183S}
Linking options:
https://www.mathnet.ru/eng/im1111
https://doi.org/10.1070/IM1991v036n01ABEH001962
https://www.mathnet.ru/eng/im/v54/i1/p173
This publication is cited in the following 8 articles:
Nicolau Saldanha, Boris Shapiro, Michael Shapiro, “Grassmann convexity and multiplicative Sturm theory, revisited”, Mosc. Math. J., 21:3 (2021), 613–637
V. SEDYKH, B. SHAPIRO, “ON TWO CONJECTURES CONCERNING CONVEX CURVES”, Int. J. Math, 16:10 (2005), 1157
Arnold's Problems, 2005, 181
B. SHAPIRO, M. SHAPIRO, “PROJECTIVE CONVEXITY IN ℙ3IMPLIES Grassmann CONVEXITY”, Int. J. Math, 11:04 (2000), 579
B. Shapiro, “Discriminants of convex curves are homeomorphic”, Proc. Amer. Math. Soc., 126:7 (1998), 1923
Vyacheslav Sedykh, Boris Shapiro, “On Young hulls of convex curves in ?2n”, J Geom, 63:1-2 (1998), 168
D. Novikov, S. Yakovenko, “Integral curvatures, oscillation and rotation of spatial curves around affine subspaces”, J Dyn Control Syst, 2:2 (1996), 157
M. Z. Shapiro, “Topology of the space of nondegenerate curves”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 291–310