Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1991, Volume 37, Issue 1, Pages 97–117
DOI: https://doi.org/10.1070/IM1991v037n01ABEH002054
(Mi im1074)
 

This article is cited in 5 scientific papers (total in 5 papers)

Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives

S. A. Nazarov

Leningrad State University
References:
Abstract: Full asymptotic expansions are found and justified for solutions of problems with smooth obstructions on the boundary Ω and in the domain ΩRn for the operator ε2Δ2+1 with a small parameter ε on the highest derivatives. In the construction of the asymptotics of solutions one formally computes an asymptotic expansion of the equation that yields a singular submanifold (for example, of a surface where the type of the boundary conditions changes). Near such surfaces there occur additional boundary layers, which are determined by solving both ordinary and partial differential equations.
Received: 06.05.1987
Bibliographic databases:
UDC: 517.946
MSC: 35B20, 49A29, 47F05
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives”, Math. USSR-Izv., 37:1 (1991), 97–117
Citation in format AMSBIB
\Bibitem{Naz90}
\by S.~A.~Nazarov
\paper Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives
\jour Math. USSR-Izv.
\yr 1991
\vol 37
\issue 1
\pages 97--117
\mathnet{http://mi.mathnet.ru/eng/im1074}
\crossref{https://doi.org/10.1070/IM1991v037n01ABEH002054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1073085}
\zmath{https://zbmath.org/?q=an:0725.49005|0704.49016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..37...97N}
Linking options:
  • https://www.mathnet.ru/eng/im1074
  • https://doi.org/10.1070/IM1991v037n01ABEH002054
  • https://www.mathnet.ru/eng/im/v54/i4/p754
  • This publication is cited in the following 5 articles:
    1. O. V. Izotova, S. A. Nazarov, “An asymptotic solution to the Signorini problem about a beam laying on two rigid bases”, J. Math. Sci. (N. Y.), 138:2 (2006), 5503–5513  mathnet  crossref  mathscinet  zmath  elib
    2. J. Sokołowski, A. Żochowski, “Modelling of topological derivatives for contact problems”, Numer. Math., 102:1 (2005), 145  crossref
    3. I. I. Argatov, J. Sokolowski, “Asymptotics of the energy functional in the Signorini problem under small singular perturbation of the domain”, Comput. Math. Math. Phys., 43:5 (2003), 710–724  mathnet  mathscinet  zmath  elib
    4. I. I. Argatov, S. A. Nazarov, “Asymptotic solution of the Signorini problem with an obstacle on a thin elongated set”, Sb. Math., 187:10 (1996), 1411–1442  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. S. A. Nazarov, “Asymptotic solution of a variational inequality modelling a friction”, Math. USSR-Izv., 37:2 (1991), 337–369  mathnet  crossref  mathscinet  zmath  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:471
    Russian version PDF:106
    English version PDF:24
    References:95
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025