Loading [MathJax]/jax/output/CommonHTML/jax.js
Israel Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Israel Journal of Mathematics, 2014, Volume 199, Issue 1, Pages 287–308
DOI: https://doi.org/10.1007/s11856-013-0049-0
(Mi ijm2)
 

This article is cited in 11 scientific papers (total in 11 papers)

Roth's theorem in many variables

T. Schoena, I. D. Shkredovbcd

a Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznán, Poland
b Division of Algebra and Number Theory, Steklov Mathematical Institute, ul. Gubkina, 8, Moscow, Russia, 119991
c IITP RAS, Bolshoy Karetny per. 19, Moscow, Russia, 127994
d Delone Laboratory of Discrete and Computational Geometry, Yaroslavl State University, Sovetskaya str. 14, Yaroslavl, Russia, 150000
Full-text PDF Citations (11)
Abstract: We prove that if A{1,,N} has no nontrivial solution to the equation x1+x2+x3+x4+x5=5y, then |A|Nec(logN)1/7, c>0. In view of the well-known Behrend construction, this estimate is close to best possible.
Funding agency Grant number
Ministry of Science and Higher Education (Poland) N201 543538
Russian Foundation for Basic Research 11-01-00759
12-01-33080
Ministry of Education and Science of the Russian Federation 11.G34.31.0053
2519.02012.1
The author is partly supported by MNSW grant N N201 543538. The author is supported by grant RFFI NN 11-01-00759, Russian Government project 11.G34.31.0053, Federal Program “Scientific and scientific–pedagogical staff of innovative Russia” 2009–2013, grant mol a ved 12-01-33080 and grant Leading Scientific Schools N 2519.02012.1.
Received: 25.10.2011
Revised: 30.10.2012
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/ijm2
  • This publication is cited in the following 11 articles:
    1. Xiumin Ren, Qingqing Zhang, Rui Zhang, “Roth-type theorem for quadratic system in Piatetski-Shapiro primes”, Journal of Number Theory, 257 (2024), 1  crossref
    2. Tomasz Schoen, “Translation-Invariant Equations With at Least Four Variables”, International Mathematics Research Notices, 2024  crossref
    3. Thomas F. Bloom, Olof Sisask, “The Kelley–Meka bounds for sets free of three-term arithmetic progressions”, Ess. Number Th., 2:1 (2023), 15  crossref
    4. Tomasz Schoen, “Improved bound in Roth's theorem on arithmetic progressions”, Advances in Mathematics, 386 (2021), 107801  crossref
    5. Stephen R. Chestnut, Robert Hildebrand, Rico Zenklusen, “Sublinear Bounds for a Quantitative Doignon–Bell–Scarf Theorem”, SIAM J. Discrete Math., 32:1 (2018), 352  crossref
    6. Joshua Grochow, “New applications of the polynomial method: The cap set conjecture and beyond”, Bull. Amer. Math. Soc., 56:1 (2018), 29  crossref
    7. Karol Cwalina, Tomasz Schoen, “Tight bounds on additive Ramsey-type numbers”, J. London Math. Soc., 96:3 (2017), 601  crossref
    8. TOMASZ SCHOEN, OLOF SISASK, “ROTH'S THEOREM FOR FOUR VARIABLES AND ADDITIVE STRUCTURES IN SUMS OF SPARSE SETS”, Forum of Mathematics, Sigma, 4 (2016)  crossref
    9. Pierre Fraigniaud, Ivan Rapaport, Ville Salo, Ioan Todinca, Lecture Notes in Computer Science, 9888, Distributed Computing, 2016, 342  crossref
    10. J. Wolf, “Finite field models in arithmetic combinatorics – ten years on”, Finite Fields and Their Applications, 32 (2015), 233  crossref
    11. I. D. Shkredov, “Structure theorems in additive combinatorics”, Russian Math. Surveys, 70:1 (2015), 113–163  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:184
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025