Loading [MathJax]/jax/output/CommonHTML/config.js
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2021, Volume 57, Pages 128–141
DOI: https://doi.org/10.35634/2226-3594-2021-57-05
(Mi iimi412)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay

M. Ibrahim, V. G. Pimenov

Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620000, Russia
Full-text PDF (162 kB) Citations (1)
References:
Abstract: A two-dimensional in space fractional diffusion equation with functional delay of a general form is considered. For this problem, the Crank-Nicolson method is constructed, based on shifted Grunwald-Letnikov formulas for approximating fractional derivatives with respect to each spatial variable and using piecewise linear interpolation of discrete history with continuation extrapolation to take into account the delay effect. The Douglas scheme is used to reduce the emerging high-dimensional system to tridiagonal systems. The residual of the method is investigated. To obtain the order of the method, we reduce the systems to constructions of the general difference scheme with heredity. A theorem on the second order of convergence of the method in time and space steps is proved. The results of numerical experiments are presented.
Keywords: diffusion equation, two spatial coordinates, functional delay, Grunwald-Letnikov approximation, Crank-Nicolson method, factorization, order of convergence.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00019
The study of the second author was funded by RFBR, project number 19-01-00019.
Received: 04.03.2021
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: English
Citation: M. Ibrahim, V. G. Pimenov, “Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay”, Izv. IMI UdGU, 57 (2021), 128–141
Citation in format AMSBIB
\Bibitem{IbrPim21}
\by M.~Ibrahim, V.~G.~Pimenov
\paper Crank-Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay
\jour Izv. IMI UdGU
\yr 2021
\vol 57
\pages 128--141
\mathnet{http://mi.mathnet.ru/iimi412}
\crossref{https://doi.org/10.35634/2226-3594-2021-57-05}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000661445200005}
Linking options:
  • https://www.mathnet.ru/eng/iimi412
  • https://www.mathnet.ru/eng/iimi/v57/p128
  • This publication is cited in the following 1 articles:
    1. V. G. Pimenov, A. V. Lekomtsev, “A compact scheme for solving a superdiffusion equationwith several variable delays”, Russian Universities Reports. Mathematics, 29:148 (2024), 440–454  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :123
    References:40
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025