Loading [MathJax]/jax/output/CommonHTML/config.js
Bulletin of Irkutsk State University. Series Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bulletin of Irkutsk State University. Series Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bulletin of Irkutsk State University. Series Mathematics, 2023, Volume 45, Pages 54–72
DOI: https://doi.org/10.26516/1997-7670.2023.45.54
(Mi iigum534)
 

This article is cited in 2 scientific papers (total in 2 papers)

Integro-differential equations and functional analysis

Triangulation method for approximate solving of variational problems in nonlinear elasticity

Vladimir A. Klyachinab, Vladislav V. Kuzminab, Ekaterina V. Khizhnyakovaba

a Volgograd State University, Volgograd, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation
References:
Abstract: A variational problem for the minimum of the stored energy functional is considered in the framework of the nonlinear theory of elasticity, taking into account admissible deformations. An algorithm for solving this problem is proposed, based on the use of a polygonal partition of the computational domain by the Delaunay triangulation method. Conditions for the convergence of the method to a local minimum in the class of piecewise affine mappings are found.
Keywords: stored energy functional, variational problem, gradient descent method, Delaunay triangulation, finite element method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-282
The work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2022-282 from 05.04.2022 with the Ministry of Science and Higher Education of the Russian Federation.
Received: 10.05.2023
Revised: 16.06.2023
Accepted: 23.06.2023
Document Type: Article
UDC: 517.97
MSC: 49J35, 65K10
Language: Russian
Citation: Vladimir A. Klyachin, Vladislav V. Kuzmin, Ekaterina V. Khizhnyakova, “Triangulation method for approximate solving of variational problems in nonlinear elasticity”, Bulletin of Irkutsk State University. Series Mathematics, 45 (2023), 54–72
Citation in format AMSBIB
\Bibitem{KlyKuzKhi23}
\by Vladimir~A.~Klyachin, Vladislav~V.~Kuzmin, Ekaterina~V.~Khizhnyakova
\paper Triangulation method for approximate solving of variational problems in nonlinear elasticity
\jour Bulletin of Irkutsk State University. Series Mathematics
\yr 2023
\vol 45
\pages 54--72
\mathnet{http://mi.mathnet.ru/iigum534}
\crossref{https://doi.org/10.26516/1997-7670.2023.45.54}
Linking options:
  • https://www.mathnet.ru/eng/iigum534
  • https://www.mathnet.ru/eng/iigum/v45/p54
  • This publication is cited in the following 2 articles:
    1. V. A. Klyachin, “Otsenki kusochno-lineinoi approksimatsii proizvodnykh funktsii klassov Soboleva”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 49 (2024), 78–89  mathnet  crossref
    2. Vladislav Kuzmin, “Calculation of 3D Shape of a Hyperelastic Body for Nonlinear Elasticity Models Using the Newton Method”, Mathematical Physics and Computer Simulation, 27:2 (2024), 80  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :53
    References:28
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025