Loading [MathJax]/jax/output/SVG/config.js
Informatika i Ee Primeneniya [Informatics and its Applications]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatika i Ee Primeneniya [Informatics and its Applications], 2009, Volume 3, Issue 4, Pages 41–56 (Mi ia79)  

This article is cited in 7 scientific papers (total in 7 papers)

Asymptotic estimates of the absolute constant in the Berry–Esseen inequality for distribution with unbounded third moment

M. O. Gaponova, I. G. Shevtsova

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Full-text PDF (266 kB) Citations (7)
References:
Abstract: The Prawitz' asymptotic estimates for the absolute constant in the Berry–Esseen inequality are sharpened for the case of independent identically distributed random variables with finite third moments. Similar estimates are constructed for the case of unbounded third absolute moment. Also, upper estimates of the asymptotically exact constants in the central limit theorem are presented.
Keywords: central limit theorem; normal approximation; convergence rate estimate; sum of independent random variables; Berry–Esseen inequality; Lyapounov fraction; asymptotically exact constant.
Document Type: Article
Language: Russian
Citation: M. O. Gaponova, I. G. Shevtsova, “Asymptotic estimates of the absolute constant in the Berry–Esseen inequality for distribution with unbounded third moment”, Inform. Primen., 3:4 (2009), 41–56
Citation in format AMSBIB
\Bibitem{GapShe09}
\by M.~O.~Gaponova, I.~G.~Shevtsova
\paper Asymptotic estimates of the absolute constant in the Berry--Esseen inequality for distribution with unbounded third moment
\jour Inform. Primen.
\yr 2009
\vol 3
\issue 4
\pages 41--56
\mathnet{http://mi.mathnet.ru/ia79}
Linking options:
  • https://www.mathnet.ru/eng/ia79
  • https://www.mathnet.ru/eng/ia/v3/i4/p41
  • This publication is cited in the following 7 articles:
    1. Shevtsova, I.G., “On the accuracy of the normal approximation for sums of independent random variables”, Doklady Mathematics, 85:2 (2012), 274–278  mathnet  crossref  mathscinet  mathscinet  zmath  isi  elib  elib
    2. Korolev, V., Shevtsova, I., “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scandinavian Actuarial Journal, 2012, no. 2, 81–105  crossref  mathscinet  zmath  isi  elib
    3. I. G. Shevtsova, “Moment estimates for the exactness of normal approximation with specified structure for sums of independent symmetrical random variables”, Theory Probab. Appl., 57:3 (2013), 468–496  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. I. G. Shevtsova, “On the asymptotically exact constants in the Berry–Esseen–Katz inequality”, Theory Probab. Appl., 55:2 (2011), 225–252  mathnet  crossref  crossref  mathscinet  isi
    5. Korolev V.Yu., Shevtsova I.G., “An improvement of the Berry-Esseen inequalities”, Dokl. Math., 81:1 (2010), 119–123  crossref  mathscinet  zmath  isi  elib  elib
    6. M. E. Grigoreva, I. G. Shevtsova, “Utochnenie neravenstva Katsa–Berri–Esseena”, Inform. i ee primen., 4:2 (2010), 75–82  mathnet
    7. V. Yu. Korolev, I. G. Shevtsova, “An upper estimate for the absolute constant in the Berry–Esseen inequality”, Theory Probab. Appl., 54:4 (2010), 638–658  mathnet  crossref  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Информатика и её применения
    Statistics & downloads:
    Abstract page:567
    Full-text PDF :142
    References:85
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025