Abstract:
In this paper the electrical and dielectric properties of polycrystalline yttrium iron garnet, obtained by the radiation-thermal sintering technology in a fast electron beam were investigated. Spectra of complex dielectric constant, dielectric loss tangent and conductivity were measured in the frequency range 25 – 1 MHz. For comparison, DC resistance measurements were also performed. The temperature dependences of the above parameters were measured at frequencies of 1 kHz, 100 kHz in the range 25 – 300∘C. It is shown, that conduction activations energy, permittivity, loss tangent and resistance vary significantly from sintering temperature in the range of 1300 to 1450∘C. It is found that with an increase in the sintering temperature to 1450∘C, dielectric properties are the same as samples made by the traditional ceramic technology.
Citation:
V. G. Kostishin, R. I. Shakirzyanov, A. G. Nalogin, S. V. Sherbakov, I. M. Isaev, M. A. Nemirovich, M. A. Mikhailenko, M. V. Korobeinikov, M. P. Mezenceva, D. V. Salogub, “Electrical and dielectric properties of yttrium–iron ferrite garnet polycrystals grown by the radiation–thermal sintering technology”, Fizika Tverdogo Tela, 63:3 (2021), 356–362; Phys. Solid State, 63:3 (2021), 435–441
\Bibitem{KosShaNal21}
\by V.~G.~Kostishin, R.~I.~Shakirzyanov, A.~G.~Nalogin, S.~V.~Sherbakov, I.~M.~Isaev, M.~A.~Nemirovich, M.~A.~Mikhailenko, M.~V.~Korobeinikov, M.~P.~Mezenceva, D.~V.~Salogub
\paper Electrical and dielectric properties of yttrium–iron ferrite garnet polycrystals grown by the radiation–thermal sintering technology
\jour Fizika Tverdogo Tela
\yr 2021
\vol 63
\issue 3
\pages 356--362
\mathnet{http://mi.mathnet.ru/ftt8164}
\crossref{https://doi.org/10.21883/FTT.2021.03.50586.230}
\elib{https://elibrary.ru/item.asp?id=45332242}
\transl
\jour Phys. Solid State
\yr 2021
\vol 63
\issue 3
\pages 435--441
\crossref{https://doi.org/10.1134/S1063783421030094}
Linking options:
https://www.mathnet.ru/eng/ftt8164
https://www.mathnet.ru/eng/ftt/v63/i3/p356
This publication is cited in the following 9 articles:
Sholpan G. Giniyatova, Rafael I. Shakirzyanov, Yuriy A. Garanin, Nurzhan A. Sailaukhanov, Artem L. Kozlovskiy, Natalia O. Volodina, Dmitriy I. Shlimas, Daryn B. Borgekov, “Investigation of the Phase Composition, Structural, Mechanical, and Dielectric Properties of (1 - x)∙ZrO2-x∙CeO2 Ceramics Synthesized by the Solid-State Method”, Applied Sciences, 14:6 (2024), 2663
Vladimir G. Kostishin, Igor M. Isaev, Dmitrij V. Salogub, “Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review”, Polymers, 16:7 (2024), 1003
S.A. Ghyngazov, A.P. Surzhikov, I.P. Vasil'ev, V.A. Boltueva, V.A. Vlasov, “Synthesis of high-entropy ceramics (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 by electron beam heating”, Ceramics International, 2024
S. A. Ghyngazov, I. P. Vasil'ev, V. A. Boltueva, “Synthesis of Complex Oxide Ceramics in a Fast Electron Beam”, Inorg. Mater. Appl. Res., 15:5 (2024), 1490
Sholpan G. Giniyatova, Artem L. Kozlovskiy, Rafael I. Shakirzyanov, Natalia O. Volodina, Dmitriy I. Shlimas, Daryn B. Borgekov, “Structural, Dielectric, and Mechanical Properties of High-Content Cubic Zirconia Ceramics Obtained via Solid-State Synthesis”, Applied Sciences, 13:19 (2023), 10989
E. N. Lysenko, V. A. Vlasov, A. P. Surzhikov, S. A. Ghyngazov, “Magnetization and Curie Point of LiZn Ferrite Synthesized by Electron Beam Heating of Mechanically Activated Reagents”, Russ Phys J, 2023
Elena N. Lysenko, Vitaly A. Vlasov, Evgeniy V. Nikolaev, Anatoliy P. Surzhikov, Mikhail V. Korobeynikov, “Microstructure and magnetization study of Li and Li–Zn ferrites synthesized by an electron beam”, Materials Chemistry and Physics, 302 (2023), 127722
S. A. Ghyngazov, I. P. Vasil'ev, V. A. Boltueva, V. A. Vlasov, “Synthesis of Technical Ceramics in a Beam of Fast Electrons”, Russ Phys J, 66:4 (2023), 391
V. G. Kostishyn, I. M. Isaev, R. I. Shakirzyanov, D. V. Salogub, A. R. Kayumova, V. K. Olitsky, “Radar Absorbing Properties of Polyvinyl Alcohol/Ni–Zn Ferrite-Spinel Composite”, Tech. Phys., 68:S2 (2023), S178