Abstract:
We present a solution of the problem of the construction of a normal diagonal form for quadratic forms over a local principal ideal ring $R=2R$ with a QF-scheme of order 2.
We give a combinatorial representation for the number of classes of projective congruence
quadrics of the projective space over $R$ with nilpotent maximal ideal. For the projective
planes, the enumeration of quadrics up to projective equivalence is given; we also consider
the projective planes over rings with nonprincipal maximal ideal.
We consider the normal form of quadratic forms over the field of $p$-adic numbers. The corresponding QF-schemes have order 4 or 8. Some open problems for QF-schemes are mentioned. The distinguished finite QF-schemes of local and elementary types (of arbitrarily large order) are realized as the QF-schemes of a field.
Citation:
V. M. Levchuk, O. A. Starikova, “A normal form and schemes of quadratic forms”, Fundam. Prikl. Mat., 13:1 (2007), 161–178; J. Math. Sci., 152:4 (2008), 558–570
\Bibitem{LevSta07}
\by V.~M.~Levchuk, O.~A.~Starikova
\paper A~normal form and schemes of quadratic forms
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 1
\pages 161--178
\mathnet{http://mi.mathnet.ru/fpm9}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322964}
\zmath{https://zbmath.org/?q=an:1180.11011}
\elib{https://elibrary.ru/item.asp?id=11143857}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 4
\pages 558--570
\crossref{https://doi.org/10.1007/s10958-008-9078-3}
\elib{https://elibrary.ru/item.asp?id=13570247}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749105645}
Linking options:
https://www.mathnet.ru/eng/fpm9
https://www.mathnet.ru/eng/fpm/v13/i1/p161
This publication is cited in the following 7 articles:
James Cruickshank, Rachel Quinlan, Fernando Szechtman, “Hermitian and skew hermitian forms over local rings”, Linear Algebra and its Applications, 551 (2018), 147
O. A. Starikova, “Classes of projectively equivalent quadrics over local rings”, Discrete Math. Appl., 23:3-4 (2013), 385–398
O. A. Starikova, “Quadratic forms and quadrics of space over local rings”, J. Math. Sci., 187:2 (2012), 177–186
O. A. Starikova, A. V. Svistunova, “Enumeration of quadrics of projective spaces over local rings”, Russian Math. (Iz. VUZ), 55:12 (2011), 48–51
Starikova O.A., “Kvadriki proektivnoi ploskosti nad lokalnym koltsom s dvuporozhdennym maksimalnym idealom”, Vestnik Severo-Vostochnogo gosudarstvennogo universiteta, 15:15 (2011), 102–107
Cao Yonglin, Szechtman F., “Congruence of symmetric matrices over local rings”, Linear Algebra Appl., 431:9 (2009), 1687–1690
Olga A. Starikova, “Simmetrichnye formy nad polulokalnymi koltsami”, Zhurn. SFU. Ser. Matem. i fiz., 2:1 (2009), 116–121