Abstract:
This article expands the special case of the Grothendieck theory to arbitrary fields. A formal definition of Belyi function over an arbitrary field is introduced. It turns out that the properties of Belyi functions over finite fields and the properties of classical Belyi functions are quite different. A definition of the primes of bad reduction is also given, and the primes of bad reduction are calculated for some dessin families.
Citation:
A. M. Vashevnik, “Prime numbers of bad reduction for dessins of genus 0”, Fundam. Prikl. Mat., 11:2 (2005), 25–43; J. Math. Sci., 142:2 (2007), 1883–1894
\Bibitem{Vas05}
\by A.~M.~Vashevnik
\paper Prime numbers of bad reduction for dessins of genus~0
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 2
\pages 25--43
\mathnet{http://mi.mathnet.ru/fpm823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2157927}
\zmath{https://zbmath.org/?q=an:1073.14043}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 142
\issue 2
\pages 1883--1894
\crossref{https://doi.org/10.1007/s10958-007-0095-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947356280}
Linking options:
https://www.mathnet.ru/eng/fpm823
https://www.mathnet.ru/eng/fpm/v11/i2/p25
This publication is cited in the following 4 articles:
George Shabat, MATRIX Book Series, 1, 2016 MATRIX Annals, 2018, 305
D. A. Oganesyan, “Zolotarev polynomials and reduction of Shabat polynomials into a positive characteristic”, Moscow University Mathematics Bulletin, 71:6 (2016), 248–252
George B. Shabat, “Visualizing Algebraic Curves: from Riemann to Grothendieck”, Zhurn. SFU. Ser. Matem. i fiz., 1:1 (2008), 42–51
V. A. Dremov, A. M. Vashevnik, “On Belyi pairs over arbitrary fields”, J. Math. Sci., 149:3 (2008), 1187–1190