Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2018, Volume 22, Issue 1, Pages 127–215 (Mi fpm1784)  

This article is cited in 10 scientific papers (total in 10 papers)

Fixed points and completeness in metric and generalized metric spaces

S. Kobzash

Babeş–Bolyai University, Faculty of Mathematics and Computer Science, 400 084 Cluj-Napoca, Romania
References:
Abstract: The famous Banach contraction principle holds in complete metric spaces, but completeness is not a necessary condition: there are incomplete metric spaces on which every contraction has a fixed point. The aim of this paper is to present various circumstances in which fixed point results imply completeness. For metric spaces, this is the case of Ekeland variational principle and of its equivalent, Caristi fixed point theorem. Other fixed point results having this property will be also presented in metric spaces, in quasi-metric spaces and in partial metric spaces. A discussion on topology and order and on fixed points in ordered structures and their completeness properties is included as well.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 3, Pages 475–535
DOI: https://doi.org/10.1007/s10958-020-05027-1
Document Type: Article
UDC: 515.126.4
Language: Russian
Citation: S. Kobzash, “Fixed points and completeness in metric and generalized metric spaces”, Fundam. Prikl. Mat., 22:1 (2018), 127–215; J. Math. Sci., 250:3 (2020), 475–535
Citation in format AMSBIB
\Bibitem{Kob18}
\by S.~Kobzash
\paper Fixed points and completeness in metric and generalized metric spaces
\jour Fundam. Prikl. Mat.
\yr 2018
\vol 22
\issue 1
\pages 127--215
\mathnet{http://mi.mathnet.ru/fpm1784}
\transl
\jour J. Math. Sci.
\yr 2020
\vol 250
\issue 3
\pages 475--535
\crossref{https://doi.org/10.1007/s10958-020-05027-1}
Linking options:
  • https://www.mathnet.ru/eng/fpm1784
  • https://www.mathnet.ru/eng/fpm/v22/i1/p127
  • This publication is cited in the following 10 articles:
    1. Ştefan Cobzaş, “The Strong Ekeland Variational Principle in Quasi-Pseudometric Spaces”, Mathematics, 12:3 (2024), 471  crossref
    2. Krzysztof Leśniak, Nina Snigireva, Filip Strobin, Andrew Vince, “Highly Non-contractive Iterated Function Systems on Euclidean Space Can Have an Attractor”, J Dyn Diff Equat, 2024  crossref
    3. Piotr Maćkowiak, “A Converse of the Banach Contraction Principle for Partial Metric Spaces and the Continuum Hypothesis”, Results Math, 79:1 (2024)  crossref
    4. Basit Ali, Ştefan Cobzaş, Mokhwetha Daniel Mabula, “Ekeland Variational Principle and Some of Its Equivalents on a Weighted Graph, Completeness and the OSC Property”, Axioms, 12:3 (2023), 247  crossref
    5. Mi Zhou, Naeem Saleem, Basit Ali, Misha Mohsin, Antonio Francisco Roldán López de Hierro, “Common Best Proximity Points and Completeness of ℱ-Metric Spaces”, Mathematics, 11:2 (2023), 281  crossref
    6. Rizwan Anjum, Mujahid Abbas, Hüseyin Iş{\i}k, “Completeness Problem via Fixed Point Theory”, Complex Anal. Oper. Theory, 17:6 (2023)  crossref
    7. Sehie PARK, “Variants of the New Caristi Theorem”, Advances in the Theory of Nonlinear Analysis and its Application, 7:2 (2023), 348  crossref
    8. E. S. Zhukovskii, “O probleme suschestvovaniya nepodvizhnoi tochki obobschenno szhimayuschego mnogoznachnogo otobrazheniya”, Vestnik rossiiskikh universitetov. Matematika, 26:136 (2021), 372–381  mathnet  crossref
    9. Nilakshi Goswami, Raju Roy, Vishnu Narayan Mishra, Luis Manuel Sánchez Ruiz, “Common Best Proximity Point Results for T-GKT Cyclic ϕ-Contraction Mappings in Partial Metric Spaces with Some Applications”, Symmetry, 13:6 (2021), 1098  crossref
    10. S. Cobzas, “Ekeland, takahashi and caristi principles in quasi-pseudometric spaces”, Topology Appl., 265 (2019), UNSP 106831  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :431
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025