Abstract:
We describe topological properties of the elliptical billiard in the Minkowski plane and geodesic motion on an ellipsoid in the Minkowski space.
Citation:
V. Dragović, M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, Fundam. Prikl. Mat., 20:2 (2015), 51–64; J. Math. Sci., 223:6 (2017), 686–694
\Bibitem{DraRad15}
\by V.~Dragovi{\'c}, M.~Radnovi{\'c}
\paper Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 2
\pages 51--64
\mathnet{http://mi.mathnet.ru/fpm1640}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3472268}
\elib{https://elibrary.ru/item.asp?id=25686562}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 223
\issue 6
\pages 686--694
\crossref{https://doi.org/10.1007/s10958-017-3378-4}
Linking options:
https://www.mathnet.ru/eng/fpm1640
https://www.mathnet.ru/eng/fpm/v20/i2/p51
This publication is cited in the following 13 articles:
G. V. Belozerov, A. T. Fomenko, “Generalized Jacobi–Chasles theorem in non-Euclidean spaces”, Sb. Math., 215:9 (2024), 1159–1181
Sean Gasiorek, Milena Radnović, Contemporary Mathematics, 807, Recent Progress in Special Functions, 2024, 111
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, 77:1 (2022), 7–19
Vladimir Dragović, Sean Gasiorek, Milena Radnović, “Billiard Ordered Games and Books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150
V. Dragović, S. Gasiorek, M. Radnović, “Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology”, Sb. Math., 213:9 (2022), 1187–1221
M Pnueli, V Rom-Kedar, “On the structure of Hamiltonian impact systems”, Nonlinearity, 34:4 (2021), 2611
E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107
A. T. Fomenko, V. V. Vedyushkina, “Singularities of integrable Liouville systems, reduction of integrals to lower degree and topological billiards: recent results”, Theor. Appl. Mech., 46:1 (2019), 47–63
E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci., 259:5 (2021), 656–675
A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733