Loading [MathJax]/jax/output/CommonHTML/jax.js
Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 6, Pages 115–123 (Mi fpm1616)  

This article is cited in 8 scientific papers (total in 8 papers)

On intersection of primary subgroups of odd order in finite almost simple groups

V. I. Zenkovab, Ya. N. Nuzhinc

a Ural Federal University, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Siberian Federal University, Krasnoyarsk
Full-text PDF (150 kB) Citations (8)
References:
Abstract: We consider the question of the determination of subgroups A and B such that ABg1 for any gG for a finite almost simple group G and its primary subgroups A and B of odd order. We prove that there exist only four possibilities for the ordered pair (A,B).
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 221, Issue 3, Pages 384–390
DOI: https://doi.org/10.1007/s10958-017-3232-8
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. I. Zenkov, Ya. N. Nuzhin, “On intersection of primary subgroups of odd order in finite almost simple groups”, Fundam. Prikl. Mat., 19:6 (2014), 115–123; J. Math. Sci., 221:3 (2017), 384–390
Citation in format AMSBIB
\Bibitem{ZenNuz14}
\by V.~I.~Zenkov, Ya.~N.~Nuzhin
\paper On intersection of primary subgroups of odd order in finite almost simple groups
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 6
\pages 115--123
\mathnet{http://mi.mathnet.ru/fpm1616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431903}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 221
\issue 3
\pages 384--390
\crossref{https://doi.org/10.1007/s10958-017-3232-8}
Linking options:
  • https://www.mathnet.ru/eng/fpm1616
  • https://www.mathnet.ru/eng/fpm/v19/i6/p115
  • This publication is cited in the following 8 articles:
    1. V. I. Zenkov, “On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups””, Proc. Steklov Inst. Math. (Suppl.), 323:1 (2023), S321–S332  mathnet  mathnet  crossref  crossref  scopus
    2. V. I. Zenkov, “Intersections of three nilpotent subgroups in a finite group”, Siberian Math. J., 62:4 (2021), 621–637  mathnet  crossref  crossref  isi  elib
    3. V. I. Zenkov, “On Intersections of Abelian and Nilpotent Subgroups in Finite Groups. II”, Math. Notes, 105:3 (2019), 366–375  mathnet  crossref  crossref  mathscinet  isi  elib
    4. V. I. Zenkov, “O peresecheniyakh par nilpotentnykh podgrupp v nebolshikh gruppakh”, Sib. elektron. matem. izv., 15 (2018), 21–28  mathnet  crossref
    5. V. I. Zenkov, “O peresecheniyakh nilpotentnykh podgrupp v konechnykh gruppakh s tsokolem L2(2m)×L2(2n)”, Tr. IMM UrO RAN, 24, no. 4, 2018, 126–134  mathnet  crossref  elib
    6. V. I. Zenkov, “On Intersections of Primary Subgroups Pairs in Finite Group With Socle Ω+2n(2m)”, Sib. Electron. Math. Rep., 15 (2018), 728–732  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Ya. N. Nuzhin, V. I. Zenkov, “On intersection of primary subgroups in the group Aut(F4(2))”, J. Sib. Fed. Univ.-Math. Phys., 11:2 (2018), 171–177  mathnet  mathnet  crossref  mathscinet  isi  scopus
    8. Zenkov V.I., “On Intersection of Two Nilpotent Subgroups in Finite Group With Socle Omega(+)(8)(2), E-6(2) Or E-7(2)”, Sib. Electron. Math. Rep., 14 (2017), 1424–1433  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :144
    References:64
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025