Loading [MathJax]/jax/output/SVG/config.js
Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 5, Pages 49–73 (Mi fpm1605)  

This article is cited in 8 scientific papers (total in 8 papers)

On the proof of Pontryagin's maximum principle by means of needle variations

A. V. Dmitrukab, N. P. Osmolovskiicd

a Central Economics and Mathematics Institute RAS
b Lomonosov Moscow State University
c University of Technology and Humanities in Radom, Poland
d Moscow State University of Civil Engineering
Full-text PDF (241 kB) Citations (8)
References:
Abstract: We propose a proof of the maximum principle for the general Pontryagin type optimal control problem, based on packets of needle variations. The optimal control problem is first reduced to a family of smooth finite-dimensional problems, the arguments of which are the widths of the needles in each packet, then, for each of these problems, the standard Lagrange multipliers rule is applied, and finally, the obtained family of necessary conditions is “compressed” in one universal optimality condition by using the concept of centered family of compacta.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 218, Issue 5, Pages 581–598
DOI: https://doi.org/10.1007/s10958-016-3044-2
Bibliographic databases:
Document Type: Article
UDC: 517.977.52
Language: Russian
Citation: A. V. Dmitruk, N. P. Osmolovskii, “On the proof of Pontryagin's maximum principle by means of needle variations”, Fundam. Prikl. Mat., 19:5 (2014), 49–73; J. Math. Sci., 218:5 (2016), 581–598
Citation in format AMSBIB
\Bibitem{DmiOsm14}
\by A.~V.~Dmitruk, N.~P.~Osmolovskii
\paper On the proof of Pontryagin's maximum principle by means of needle variations
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 5
\pages 49--73
\mathnet{http://mi.mathnet.ru/fpm1605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431892}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 218
\issue 5
\pages 581--598
\crossref{https://doi.org/10.1007/s10958-016-3044-2}
Linking options:
  • https://www.mathnet.ru/eng/fpm1605
  • https://www.mathnet.ru/eng/fpm/v19/i5/p49
  • This publication is cited in the following 8 articles:
    1. A. V. Dmitruk, “Variations of $v$-change of time in an optimal control problem with state and mixed constraints”, Izv. Math., 87:4 (2023), 726–767  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Francesca Calà Campana, Alfio Borzì, “On the SQH Method for Solving Differential Nash Games”, J Dyn Control Syst, 28:4 (2022), 739  crossref
    3. S. Hofmann, A. Borzì, “A sequential quadratic hamiltonian algorithm for training explicit RK neural networks”, Journal of Computational and Applied Mathematics, 405 (2022), 113943  crossref
    4. Tim Breitenbach, Alfio Borzì, “A Sequential Quadratic Hamiltonian Method for Solving Parabolic Optimal Control Problems with Discontinuous Cost Functionals”, J Dyn Control Syst, 25:3 (2019), 403  crossref
    5. Tim Breitenbach, Alfio Borzì, “On the SQH Scheme to Solve Nonsmooth PDE Optimal Control Problems”, Numerical Functional Analysis and Optimization, 40:13 (2019), 1489  crossref
    6. A. V. Dmitruk, N. P. Osmolovskii, “Variations of the $v$-change of time in problems with state constraints”, Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S49–S64  mathnet  crossref  crossref  isi  elib
    7. V. A. Dykhta, “Pozitsionnyi printsip minimuma dlya kvazioptimalnykh protsessov v zadachakh upravleniya s terminalnymi ogranicheniyami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 19 (2017), 113–128  mathnet  crossref
    8. S. Roy, A. Borzi, “Numerical investigation of a class of Liouville control problems”, J. Sci. Comput., 73:1 (2017), 178–202  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:614
    Full-text PDF :403
    References:79
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025