Abstract:
A problem of constructing local definitions for formations of finite groups is discussed in the article. The author analyzes relations between local definitions of various types. A new proof of the existence of an $\omega$-composition satellite of an $\omega$-solubly saturated formation is obtained. It is proved that if a nonempty formation of finite groups is $\mathfrak X$-local by Förster, then it has an $\mathfrak X$-composition satellite.
Citation:
L. A. Shemetkov, “Local definitions of formations of finite groups”, Fundam. Prikl. Mat., 16:8 (2010), 229–244; J. Math. Sci., 185:2 (2012), 324–334
\Bibitem{She10}
\by L.~A.~Shemetkov
\paper Local definitions of formations of finite groups
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 8
\pages 229--244
\mathnet{http://mi.mathnet.ru/fpm1384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2869840}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 185
\issue 2
\pages 324--334
\crossref{https://doi.org/10.1007/s10958-012-0917-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866343036}
Linking options:
https://www.mathnet.ru/eng/fpm1384
https://www.mathnet.ru/eng/fpm/v16/i8/p229
This publication is cited in the following 5 articles:
I. P. Los, V. G. Safonov, “Otdelimost reshetki $\tau$-zamknutykh totalno $\omega$-kompozitsionnykh formatsii konechnykh grupp”, Tr. In-ta matem., 31:2 (2023), 44–56
I. P. Los, V. G. Safonov, “Ob odnoporozhdennykh i ogranichennykh totalno $\omega$-kompozitsionnykh formatsiyakh konechnykh grupp”, PFMT, 2021, no. 4(49), 101–107
Tsarev A., “Laws of the Lattice of All (Sic)-Local Formations of Finite Groups”, Ric. Mat., 2021
Aleksandr Tsarev, “Algebraic lattices of partially saturated formations of finite groups”, Afr. Mat., 31:3-4 (2020), 701
L. A. Shemetkov, “O $\mathfrak F$-koradikale pryamogo proizvedeniya konechnykh grupp”, Tr. IMM UrO RAN, 19, no. 3, 2013, 316–320