Abstract:
In the given paper, we prove that every automorphism of a Chevalley group of type Bl, l≥2, over a commutative local ring with 1/2 is standard, i.e., it is a composition of ring, inner, and central automorphisms.
Citation:
E. I. Bunina, “Automorphisms of Chevalley groups of type Bl over local rings with 1/2”, Fundam. Prikl. Mat., 15:7 (2009), 3–46; J. Math. Sci., 169:5 (2010), 557–588
\Bibitem{Bun09}
\by E.~I.~Bunina
\paper Automorphisms of Chevalley groups of type $B_l$ over local rings with~1/2
\jour Fundam. Prikl. Mat.
\yr 2009
\vol 15
\issue 7
\pages 3--46
\mathnet{http://mi.mathnet.ru/fpm1269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2745001}
\elib{https://elibrary.ru/item.asp?id=15340711}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 169
\issue 5
\pages 557--588
\crossref{https://doi.org/10.1007/s10958-010-0061-4}
\elib{https://elibrary.ru/item.asp?id=15335025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956064459}
Linking options:
https://www.mathnet.ru/eng/fpm1269
https://www.mathnet.ru/eng/fpm/v15/i7/p3
This publication is cited in the following 7 articles:
E. I. Bunina, M. A. Vladykina, “Automorphisms of a Chevalley group of type $\mathbf G_2$ over a commutative ring $R$ with $1/3$ generated by the invertible elements and $2R$”, J. Math. Sci., 284:4 (2024), 431–441
E. I. Bunina, “Isomorphisms and elementary equivalence of Chevalley groups over commutative rings”, Sb. Math., 210:8 (2019), 1067–1091
E. I. Bunina, A. V. Mikhalev, I. O. Solovyev, “Elementary equivalence of stable linear groups over local commutative rings with $1/2$”, J. Math. Sci., 233:5 (2018), 646–655
Timur R. Nasybullov, “The R∞-property for Chevalley groups of types Bl, Cl, Dl over integral domains”, Journal of Algebra, 446 (2016), 489
Bunina E.I., “Automorphisms of Chevalley Groups of Different Types Over Commutative Rings”, J. Algebra, 355:1 (2012), 154–170
E. I. Bunina, P. A. Veryovkin, “Automorphisms of Chevalley groups of type $G_2$ over local rings without $1/2$”, J. Math. Sci., 197:4 (2014), 479–491
E. I. Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, $E_l$ over local rings without 1/2”, J. Math. Sci., 169:5 (2010), 589–613