Typesetting math: 100%
Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2008, Volume 14, Issue 5, Pages 171–184 (Mi fpm1149)  

This article is cited in 10 scientific papers (total in 10 papers)

On the Kurosh problem in varieties of algebras

D. I. Piontkovski

State University – Higher School of Economics
References:
Abstract: We consider a couple of versions of the classical Kurosh problem (whether there is an infinite-dimensional algebraic algebra?) for varieties of linear multioperator algebras over a field. We show that, given an arbitrary signature, there is a variety of algebras of this signature such that the free algebra of the variety contains polylinear elements of arbitrarily large degree, while the clone of every such element satisfies some nontrivial identity. If, in addition, the number of binary operations is at least 2, then each such clone may be assumed to be finite-dimensional. Our approach is the following: we translate the problem to the language of operads and then apply usual homological constructions in order to adopt Golod's solution of the original Kurosh problem. The paper is expository, so that some proofs are omitted. At the same time, the general relations of operads, algebras, and varieties are widely discussed.
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 163, Issue 6, Pages 743–750
DOI: https://doi.org/10.1007/s10958-009-9711-9
Bibliographic databases:
UDC: 512.572+512.664.1
Language: Russian
Citation: D. I. Piontkovski, “On the Kurosh problem in varieties of algebras”, Fundam. Prikl. Mat., 14:5 (2008), 171–184; J. Math. Sci., 163:6 (2009), 743–750
Citation in format AMSBIB
\Bibitem{Pio08}
\by D.~I.~Piontkovski
\paper On the Kurosh problem in varieties of algebras
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 5
\pages 171--184
\mathnet{http://mi.mathnet.ru/fpm1149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2533586}
\elib{https://elibrary.ru/item.asp?id=12174994}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 163
\issue 6
\pages 743--750
\crossref{https://doi.org/10.1007/s10958-009-9711-9}
\elib{https://elibrary.ru/item.asp?id=15299454}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73249143019}
Linking options:
  • https://www.mathnet.ru/eng/fpm1149
  • https://www.mathnet.ru/eng/fpm/v14/i5/p171
  • This publication is cited in the following 10 articles:
    1. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. I. Introduction”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 213, VINITI RAN, M., 2022, 110–144  mathnet  crossref
    2. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. II. Quantization proof of Bergman's centralizer theorem”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 214, VINITI RAN, M., 2022, 107–126  mathnet  crossref
    3. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. III. Avtomorfizmy, topologiya popolneniya i approksimatsiya”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 215, VINITI RAN, M., 2022, 95–128  mathnet  crossref
    4. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. IV. Approksimatsii polinomialnymi simplektomorfizmami”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 216, VINITI RAN, M., 2022, 153–171  mathnet  crossref
    5. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. V. Gipoteza Yakobiana i problemy tipa Shpekhta i Bernsaida”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 217, VINITI RAN, M., 2022, 107–137  mathnet  crossref
    6. Alexei Kanel-Belov, Alexei Chilikov, Ilya Ivanov-Pogodaev, Sergey Malev, Eugeny Plotkin, Jie-Tai Yu, Wenchao Zhang, “Nonstandard Analysis, Deformation Quantization and Some Logical Aspects of (Non)Commutative Algebraic Geometry”, Mathematics, 8:10 (2020), 1694  crossref
    7. Ilya Ivanov-Pogodaev, Sergey Malev, “Finite Gröbner basis algebras with unsolvable nilpotency problem and zero divisors problem”, Journal of Algebra, 508 (2018), 575  crossref
    8. Dmitri Piontkovski, Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, 2017, 373  crossref
    9. Alexei Belov, Leonid Bokut, Louis Rowen, Jie-Tai Yu, Springer Proceedings in Mathematics & Statistics, 79, Automorphisms in Birational and Affine Geometry, 2014, 249  crossref
    10. Aljadeff E., Kanel-Belov A., “Representability and Specht problem for G-graded algebras”, Adv. Math., 225:5 (2010), 2391–2428  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:409
    Full-text PDF :149
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025