Loading [MathJax]/jax/output/SVG/config.js
Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2005, Volume 41, Issue 4, Pages 99–109 (Mi fgv1706)  

This article is cited in 72 scientific papers (total in 72 papers)

Continuous spin detonation in annular combustors

F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Citations (72)
Abstract: An acetylene-oxygen mixture is burned in two annular chambers 100 mm in diameter in the spin detonation regime with supercritical and subcritical differences of oxygen pressure in the annular slot. By varying the flow rates of components of the mixture, width of the slot for oxidizer injection, point of fuel injection, and initial ambient pressure, the regions of existence and the structure of transverse detonation waves are studied, and the limits of existence of continuous detonation in terms of pressure in the chamber are determined. The losses of the total pressure in the flow in oxygen-injection slots and in fuel-injector orifices are estimated.
Keywords: fuel, continuous detonation, subsonic flow, combustor, transverse detonation waves, flow structure.
Received: 01.06.2004
Accepted: 09.12.2004
English version:
Combustion, Explosion and Shock Waves, 2005, Volume 41, Issue 4, Pages 449–459
DOI: https://doi.org/10.1007/s10573-005-0055-6
Bibliographic databases:
Document Type: Article
UDC: 536.8, 536.46
Language: Russian
Citation: F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, “Continuous spin detonation in annular combustors”, Fizika Goreniya i Vzryva, 41:4 (2005), 99–109; Combustion, Explosion and Shock Waves, 41:4 (2005), 449–459
Citation in format AMSBIB
\Bibitem{BykZhdVed05}
\by F.~A.~Bykovskii, S.~A.~Zhdan, E.~F.~Vedernikov
\paper Continuous spin detonation in annular combustors
\jour Fizika Goreniya i Vzryva
\yr 2005
\vol 41
\issue 4
\pages 99--109
\mathnet{http://mi.mathnet.ru/fgv1706}
\elib{https://elibrary.ru/item.asp?id=16534092}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2005
\vol 41
\issue 4
\pages 449--459
\crossref{https://doi.org/10.1007/s10573-005-0055-6}
Linking options:
  • https://www.mathnet.ru/eng/fgv1706
  • https://www.mathnet.ru/eng/fgv/v41/i4/p99
  • This publication is cited in the following 72 articles:
    1. Yixiang Li, Miao Cheng, Zhaohua Sheng, Yingnan Wang, Xiangyang Liu, Jianping Wang, “Propagation of rotating detonation wave with wall-detached injection in a hollow combustor”, International Journal of Hydrogen Energy, 49 (2024), 1100  crossref
    2. Yingchen Shi, Yongbo Zhang, Haocheng Wen, Bing Wang, “Comprehensive analysis method of acquiring wall heat fluxes in rotating detonation combustors”, Experimental Thermal and Fluid Science, 152 (2024), 111120  crossref
    3. Sheng Xu, Xin Jin, Wenqi Fan, Haocheng Wen, Bing Wang, “Numerical investigation on the interaction characteristics between the gaseous detonation wave and the water droplet”, Combustion and Flame, 269 (2024), 113713  crossref
    4. Sheng Xu, Xin Jin, Hongyu Chen, Wenqi Fan, Haocheng Wen, Bing Wang, “Modelling and simulation on compressible multi-component gas-liquid flows with chemical reaction and phase transition effects”, Aerospace Science and Technology, 153 (2024), 109451  crossref
    5. “Numerical study on the integration of supersonic turbine guide vanes and three-dimensional hydrogen/air rotating detonation combustor”, Physics of Fluids, 35:6 (2023)  crossref
    6. P. Wolański, M. Kawalec, K. Benkiewicz, Green Energy and Technology, Hydrogen for Future Thermal Engines, 2023, 521  crossref
    7. V.F. Nikitin, E.V. Mikhalchenko, L.I. Stamov, “The use of detailed kinetics for modeling aerospace propulsion devices”, Acta Astronautica, 204 (2023), 761  crossref
    8. Haocheng Wen, Wenqi Fan, Sheng Xu, Bing Wang, “Numerical study on droplet evaporation and propagation stability in normal-temperature two-phase rotating detonation system”, Aerospace Science and Technology, 138 (2023), 108324  crossref
    9. Jingtian Yu, Songbai Yao, Jingzhe Li, Jianghong Li, Chunhai Guo, Wenwu Zhang, “Numerical investigation of the rotating detonation engine with cat-ear-shaped film cooling holes under varying operating modes”, Aerospace Science and Technology, 142 (2023), 108642  crossref
    10. Haolong Meng, Baoxing Li, Guiyang Xu, Zhong Wang, Chunsheng Weng, “Characteristics of rotating detonation wave fueled by liquid kerosene with increasing equivalence ratios”, FirePhysChem, 3:4 (2023), 300  crossref
    11. Liangjun Su, Fengbo Wen, Songtao Wang, Zhongqi Wang, “Analysis of energy saving and thrust characteristics of rotating detonation turbine engine”, Aerospace Science and Technology, 124 (2022), 107555  crossref
    12. Jianping Zhou, Feilong Song, Shida Xu, Xingkui Yang, Yongjun Zheng, “Investigation of Rotating Detonation Fueled by Liquid Kerosene”, Energies, 15:12 (2022), 4483  crossref
    13. Liangjun Su, Fengbo Wen, Chenxin Wan, Zuobiao Li, Jiajun Han, Songtao Wang, Zhongqi Wang, “Large-eddy simulation study of rotating detonation supersonic turbine nozzle generated by the method of characteristics under oscillating incoming flow”, Physics of Fluids, 34:11 (2022)  crossref
    14. Haocheng Wen, Wei Wei, Wenqi Fan, Qiaofeng Xie, Bing Wang, “On the propagation stability of droplet-laden two-phase rotating detonation waves”, Combustion and Flame, 244 (2022), 112271  crossref
    15. E. V. Mikhalchenko, V. F. Nikitin, V. D. Goryachev, Lecture Notes in Mechanical Engineering, Advanced Problem in Mechanics II, 2022, 98  crossref
    16. Gaoyang Ge, Li Deng, Hu Ma, Zhenjuan Xia, Xiao Liu, Changsheng Zhou, “Effect of high-pressure detonation products on fuel injection and propagation characteristics of detonation wave”, Propulsion and Power Research, 11:1 (2022), 58  crossref
    17. Xiang-Yang Liu, Miao Cheng, Yun-Zhen Zhang, Jian-Ping Wang, “Design and optimization of aerospike nozzle for rotating detonation engine”, Aerospace Science and Technology, 120 (2022), 107300  crossref
    18. Venkat Athmanathan, James Braun, Zachary M. Ayers, Christopher A. Fugger, Austin M. Webb, Mikhail N. Slipchenko, Guillermo Paniagua, Sukesh Roy, Terrence R. Meyer, “On the effects of reactant stratification and wall curvature in non-premixed rotating detonation combustors”, Combustion and Flame, 240 (2022), 112013  crossref
    19. Zhaoxin Ren, Longxi Zheng, “Numerical study on rotating detonation stability in two-phase kerosene-air mixture”, Combustion and Flame, 231 (2021), 111484  crossref
    20. Yuhui Wang, Jialing Le, “A rotating detonation engine using methane-ethylene mixture and air”, Acta Astronautica, 188 (2021), 25  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:78
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025