Loading [MathJax]/jax/output/SVG/config.js
Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2008, Volume 44, Issue 6, Pages 83–91 (Mi fgv1449)  

This article is cited in 37 scientific papers (total in 37 papers)

Mathematical model of continuous detonation in an annular combustor with a supersonic flow velocity

S. A. Zhdan

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Citations (37)
Abstract: A two-dimensional unsteady mathematical model of a continuous spinning detonation wave in a supersonic incoming flow in an annular combustor is formulated. The wave dynamics in a combustor filled by a gaseous hydrogen-oxygen mixture is studied. The possibility of continuous spin detonation with a supersonic flow velocity at the diffuser entrance is demonstrated numerically for the first time; the structure of transverse detonation waves and the range of their existence depending on the Mach number are studied.
Keywords: continuous detonation, flow-type combustor, transverse detonation waves, flow structure, mathematical modeling.
Received: 15.01.2008
English version:
Combustion, Explosion and Shock Waves, 2008, Volume 44, Issue 6, Pages 690–697
DOI: https://doi.org/10.1007/s10573-008-0104-z
Bibliographic databases:
Document Type: Article
UDC: 536.8, 536.46
Language: Russian
Citation: S. A. Zhdan, “Mathematical model of continuous detonation in an annular combustor with a supersonic flow velocity”, Fizika Goreniya i Vzryva, 44:6 (2008), 83–91; Combustion, Explosion and Shock Waves, 44:6 (2008), 690–697
Citation in format AMSBIB
\Bibitem{Zhd08}
\by S.~A.~Zhdan
\paper Mathematical model of continuous detonation in an annular combustor with a supersonic flow velocity
\jour Fizika Goreniya i Vzryva
\yr 2008
\vol 44
\issue 6
\pages 83--91
\mathnet{http://mi.mathnet.ru/fgv1449}
\elib{https://elibrary.ru/item.asp?id=11846396}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2008
\vol 44
\issue 6
\pages 690--697
\crossref{https://doi.org/10.1007/s10573-008-0104-z}
Linking options:
  • https://www.mathnet.ru/eng/fgv1449
  • https://www.mathnet.ru/eng/fgv/v44/i6/p83
  • This publication is cited in the following 37 articles:
    1. S. She-Ming Lau-Chapdelaine, Matei I. Radulescu, Zekai Hong, “Quasi-Two-Dimensional Simulation of a Rotating Detonation Engine Combustor and Injector”, Journal of Propulsion and Power, 40:1 (2024), 42  crossref
    2. Zhongqi Luo, Hexia Huang, Huijun Tan, Gang Liang, Jinghao Lv, Yuwen Wu, Liugang Li, “On the Self-Similarity in an Annular Isolator under Rotating Feedback Pressure Perturbations”, Aerospace, 10:2 (2023), 188  crossref
    3. W K Feng, Q Zheng, Q Xiao, C S Weng, “Numerical study on the propagation characteristics of rotating detonation waves in a ramjet engine”, J. Phys.: Conf. Ser., 2460:1 (2023), 012055  crossref
    4. Xixuan Huang, Zhiyong Lin, Yu Liu, Qianmin Wu, “Numerical simulation on the operating characteristics of rotating detonation ramjet engines at high flight mach number”, International Journal of Hydrogen Energy, 48:24 (2023), 9109  crossref
    5. Guangyu Wang, Shijie Liu, Haoyang Peng, Weidong Liu, “Experimental Investigation of a Cylindrical Air-Breathing Continuous Rotating Detonation Engine with Different Nozzle Throat Diameters”, Aerospace, 9:5 (2022), 267  crossref
    6. V.S. Ivanov, S.M. Frolov, A.E. Zangiev, V.I. Zvegintsev, I.O. Shamshin, “Updated conceptual design of hydrogen/ethylene fueled detonation ramjet: Test fires at Mach 1.5, 2.0, and 2.5”, Aerospace Science and Technology, 126 (2022), 107602  crossref
    7. Wei-jie Fan, Jin Zhou, Shi-jie Liu, Hao-yang Peng, “Effects of the geometrical parameters of the injection nozzle on ethylene-air continuous rotating detonation”, J. Zhejiang Univ. Sci. A, 22:7 (2021), 547  crossref
    8. Kevin Wu, Shu-jie Zhang, Da-wen She, Jian-ping Wang, “Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation combustor”, Physics of Fluids, 33:12 (2021)  crossref
    9. Kim JuHoe, Takeshi Tsuchiya, AIAA Scitech 2021 Forum, 2021  crossref
    10. Weijie Fan, Shijie Liu, Jin Zhou, Haoyang Peng, Siyuan Huang, “Effects of Annular Combustor Width on the Ethylene-Air Continuous Rotating Detonation”, International Journal of Aerospace Engineering, 2020 (2020), 1  crossref
    11. Hao-Yang Peng, Wei-Dong Liu, Shi-Jie Liu, Hai-Long Zhang, Lu-Xin Jiang, “Flowfield Analysis and Reconstruction of Ethylene–Air Continuous Rotating Detonation Wave”, AIAA Journal, 58:12 (2020), 5036  crossref
    12. Kevin Wu, Shujie Zhang, Mingyi Luan, Jianping Wang, “Effects of flow-field structures on the stability of rotating detonation ramjet engine”, Acta Astronautica, 168 (2020), 174  crossref
    13. Qing Xu, Haowei Li, Yaoxun Feng, Xiaoning Li, Changming Ling, Chaoying Zhou, Jiang Qin, “Dynamic thermo-physical characteristics of high temperature gaseous hydrocarbon fuel thermal power generation for regeneratively cooled hypersonic propulsion system”, Energy, 211 (2020), 118722  crossref
    14. Jian Sun, Jin Zhou, Shijie Liu, Zhiyong Lin, Wei Lin, “Effects of air injection throat width on a non-premixed rotating detonation engine”, Acta Astronautica, 159 (2019), 189  crossref
    15. Jian Sun, Jin Zhou, Shijie Liu, Zhiyong Lin, Wei Lin, “Numerical investigation of a non-premixed hollow rotating detonation engine”, International Journal of Hydrogen Energy, 44:31 (2019), 17084  crossref
    16. Vijay Anand, Ephraim Gutmark, “Rotating detonation combustors and their similarities to rocket instabilities”, Progress in Energy and Combustion Science, 73 (2019), 182  crossref
    17. S. Hansmetzger, R. Zitoun, P. Vidal, “A study of continuous rotation modes of detonation in an annular chamber with constant or increasing section”, Shock Waves, 28:5 (2018), 1065  crossref
    18. Robert Fievisohn, John L. Hoke, Frederick R. Schauer, 2018 AIAA Aerospace Sciences Meeting, 2018  crossref
    19. Mohammed Niyasdeen Nejaamtheen, Jung-Min Kim, Jeong-Yeol Choi, Shock Wave and High Pressure Phenomena, Detonation Control for Propulsion, 2018, 109  crossref
    20. Andrew R. Mizener, Frank K. Lu, Patrick E. Rodi, 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025