Processing math: 100%
Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2010, Volume 46, Issue 1, Pages 60–68 (Mi fgv1162)  

This article is cited in 18 scientific papers (total in 18 papers)

Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region

F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Citations (18)
Abstract: Results of an experimental study in a flow-type annular cylindrical combustor with an outer diameter of 30.6 cm are described. The influence of air addition to the products of continuous spin detonation of a hydrogen-air mixture and to the mixing region on parameters of detonation waves, pressure in the combustor, and specific impulse is studied. The range of continuous spin detonation of the hydrogen-air mixture is extended to specific flow rates of the mixture equal to 560 kg/(sec m2) and fuel-to-air equivalence ratios equal to 0.5–4.4. It is demonstrated that addition of air decreases the detonation velocity, increases the pressure in the combustor and thrust, and decreases the specific flow rate of the fuel. The total pressure loss due to the mixing process and heat transfer to a colder gas increases. The minimum specific flow rate of hydrogen reached in the combustor of the examined geometry is 0.04 kg/(h N).
Keywords: combustor, detonation wave, continuous spin detonation, fuel-air mixture, specific impulse, specific flow rate of the fuel, stagnation pressure loss.
Received: 30.01.2009
Accepted: 31.03.2009
English version:
Combustion, Explosion and Shock Waves, 2010, Volume 46, Issue 1, Pages 52–59
DOI: https://doi.org/10.1007/s10573-010-0009-5
Bibliographic databases:
Document Type: Article
UDC: 536.8, 536.46
Language: Russian
Citation: F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, “Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region”, Fizika Goreniya i Vzryva, 46:1 (2010), 60–68; Combustion, Explosion and Shock Waves, 46:1 (2010), 52–59
Citation in format AMSBIB
\Bibitem{BykZhdVed10}
\by F.~A.~Bykovskii, S.~A.~Zhdan, E.~F.~Vedernikov
\paper Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region
\jour Fizika Goreniya i Vzryva
\yr 2010
\vol 46
\issue 1
\pages 60--68
\mathnet{http://mi.mathnet.ru/fgv1162}
\elib{https://elibrary.ru/item.asp?id=13411025}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2010
\vol 46
\issue 1
\pages 52--59
\crossref{https://doi.org/10.1007/s10573-010-0009-5}
Linking options:
  • https://www.mathnet.ru/eng/fgv1162
  • https://www.mathnet.ru/eng/fgv/v46/i1/p60
  • This publication is cited in the following 18 articles:
    1. Jingtian Yu, Songbai Yao, Ying Lei, Wenwu Zhang, “Rotating detonation combustor with regional full-coverage film cooling and variable-shaped hole arrangements”, Physics of Fluids, 37:3 (2025)  crossref
    2. Liangjun Su, Fengbo Wen, “Analysis of coupling supersonic turbine stage with rotating detonation combustor under different turbine parameters”, Aerospace Science and Technology, 153 (2024), 109452  crossref
    3. “Numerical study on the integration of supersonic turbine guide vanes and three-dimensional hydrogen/air rotating detonation combustor”, Physics of Fluids, 35:6 (2023)  crossref
    4. Dong LI, Guozhu LIANG, Yining ZHANG, Hao MENG, 2023 20th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2023, 690  crossref
    5. Liangjun Su, Fengbo Wen, Songtao Wang, Zhongqi Wang, “Analysis of energy saving and thrust characteristics of rotating detonation turbine engine”, Aerospace Science and Technology, 124 (2022), 107555  crossref
    6. Zhenjuan Xia, Cuizhen Zhang, Fengming Wang, Yong He, Hu Ma, Gaoyang Ge, Changsheng Zhou, “Propagation characteristics of hydrogen-air rotating detonation wave in disk-shaped combustors with different configurations”, Aerospace Science and Technology, 130 (2022), 107806  crossref
    7. Dapeng Xiong, Mingbo Sun, Haoyang Peng, Yanan Wang, Yixin Yang, Hongbo Wang, Jiangfei Yu, Zhenguo Wang, Jun-Wei Li, “Numerical Investigation of Contact Burning in an Air-Breathing Continuous Rotating Detonation Engine”, International Journal of Aerospace Engineering, 2022 (2022), 1  crossref
    8. Liangjun Su, Fengbo Wen, Chenxin Wan, Zuobiao Li, Jiajun Han, Songtao Wang, Zhongqi Wang, “Large-eddy simulation study of rotating detonation supersonic turbine nozzle generated by the method of characteristics under oscillating incoming flow”, Physics of Fluids, 34:11 (2022)  crossref
    9. E. V. Mikhalchenko, V. F. Nikitin, Yu. G. Phylippov, L. I. Stamov, “Numerical study of rotating detonation onset in engines”, Shock Waves, 31:7 (2021), 763  crossref
    10. F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, “Parameters of continuous detonation of methane/hydrogen–air mixtures with addition of air to combustion products”, Combustion, Explosion and Shock Waves, 56:2 (2020), 198–208  mathnet  mathnet  crossref  crossref
    11. S. A. Zhdan, A. I. Rybnikov, E. V. Simonov, “Modeling of continuous spin detonation of a hydrogen–air mixture in an annular cylindrical combustor”, Combustion, Explosion and Shock Waves, 56:2 (2020), 209–219  mathnet  mathnet  crossref  crossref
    12. Jian Sun, Jin Zhou, Shijie Liu, Zhiyong Lin, “Interaction between rotating detonation wave propagation and reactant mixing”, Acta Astronautica, 164 (2019), 197  crossref
    13. Vijay Anand, Ephraim Gutmark, “Rotating detonation combustors and their similarities to rocket instabilities”, Progress in Energy and Combustion Science, 73 (2019), 182  crossref
    14. Rui Zhou, Dan Wu, Jianping Wang, “Progress of continuously rotating detonation engines”, Chinese Journal of Aeronautics, 29:1 (2016), 15  crossref
    15. A. V. Dubrovskii, V. S. Ivanov, S. M. Frolov, “Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and air”, Russ. J. Phys. Chem. B, 9:1 (2015), 104  crossref
    16. Jan Kindracki, “Experimental research on rotating detonation in liquid fuel–gaseous air mixtures”, Aerospace Science and Technology, 43 (2015), 445  crossref
    17. S. M. Frolov, A. V. Dubrovskii, V. S. Ivanov, “Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer”, Russ. J. Phys. Chem. B, 7:1 (2013), 35  crossref
    18. S. M. Frolov, A. V. Dubrovskii, V. S. Ivanov, “Three-dimensional numerical simulation of the operation of the rotating-detonation chamber”, Russ. J. Phys. Chem. B, 6:2 (2012), 276  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025