Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2011, Volume 47, Issue 4, Pages 3–23 (Mi fgv1107)  

This article is cited in 10 scientific papers (total in 10 papers)

Measurement of electrical conductivity of condensed substances in shock waves (Review)

S. D. Gilev

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Citations (10)
Abstract: Available experimental techniques of electrical conductivity measurements under strong shock compression are analyzed. Dielectric-semiconductor, dielectric (semiconductor)-metal, and metal-metal (semiconductor) transitions are considered. Methods and schemes of contact and contactless measurements in inert and electrically active media, implemented by various authors, are discussed. In-depth analysis of measurement circuits, two-dimensional and three-dimensional modeling of currents, fields, and hydrodynamic flows, passing from the electric engineering model to the field electromagnetic model, and allowance for transitional electrodynamic processes have contributed to the significant recent improvement of the time resolution and to extending the range of conductivity registration under shock compression. A typical feature of new techniques is solving a differential equation for the electrical circuit or finding electrical conductivity by solving an inverse boundary-value problem for the magnetic diffusion equation. In particular, the problem of electrical conductivity registration on dielectric (semiconductor) – metal transitions, which has been known since the 1950s, is solved in this manner. Difficulties, constraints, and unsolved problems of experimental techniques are discussed.
Keywords: shock wave, electrical conductivity, measurement techniques.
Received: 25.06.2010
English version:
Combustion, Explosion and Shock Waves, 2011, Volume 47, Issue 4, Pages 375–393
DOI: https://doi.org/10.1134/S0010508211040010
Bibliographic databases:
Document Type: Article
UDC: 539.63:537.311.3
Language: Russian
Citation: S. D. Gilev, “Measurement of electrical conductivity of condensed substances in shock waves (Review)”, Fizika Goreniya i Vzryva, 47:4 (2011), 3–23; Combustion, Explosion and Shock Waves, 47:4 (2011), 375–393
Citation in format AMSBIB
\Bibitem{Gil11}
\by S.~D.~Gilev
\paper Measurement of electrical conductivity of condensed substances in shock waves (Review)
\jour Fizika Goreniya i Vzryva
\yr 2011
\vol 47
\issue 4
\pages 3--23
\mathnet{http://mi.mathnet.ru/fgv1107}
\elib{https://elibrary.ru/item.asp?id=16986586}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2011
\vol 47
\issue 4
\pages 375--393
\crossref{https://doi.org/10.1134/S0010508211040010}
Linking options:
  • https://www.mathnet.ru/eng/fgv1107
  • https://www.mathnet.ru/eng/fgv/v47/i4/p3
  • This publication is cited in the following 10 articles:
    1. Bo Gan, Jun Li, Junjie Gao, Qiru Zeng, Wenhao Song, Yukai Zhuang, Yingxin Hua, Qiang Wu, Gang Jiang, Yuan Yin, Youjun Zhang, “Electrical conductivity of copper under ultrahigh pressure and temperature conditions by both experiments and first-principles simulations”, Phys. Rev. B, 109:11 (2024)  crossref
    2. M. I. Kulish, A. N. Emelyanov, A. A. Golyshev, S. V. Dudin, D. V. Shakhrai, “Realization of Two-Wire and Four-Wire Electrical Resistance Measurement Schemes in Dynamic Experiments”, Instrum Exp Tech, 66:1 (2023), 92  crossref
    3. S. D. Gilev, “Electrical resistance of aluminum under shock compression: experimental data”, Combustion, Explosion and Shock Waves, 59:1 (2023), 118–124  mathnet  mathnet  crossref  crossref
    4. Zhongyu Zhou, Zhuowei Gu, Fuli Tan, Jianheng Zhao, Chengwei Sun, Cangli Liu, “Development of a transient complex impedance measurement device used in quasi-isentropic compression experiments”, Review of Scientific Instruments, 93:5 (2022)  crossref
    5. S. D. Gilev, “Nonequilibrium of the physical state of copper under impact compression”, Combustion, Explosion and Shock Waves, 57:3 (2021), 378–384  mathnet  mathnet  crossref  crossref
    6. Meryem Berrada, Richard A. Secco, “Review of Electrical Resistivity Measurements and Calculations of Fe and Fe-Alloys Relating to Planetary Cores”, Front. Earth Sci., 9 (2021)  crossref
    7. Veerabhadragouda B. Patil, Mallikarjuna N. Nadagouda, Satish A. Ture, Channabasaveshwara V. Yelamaggad, Venkataraman Abbaraju, “Detection of energetic materials via polyaniline and its different modified forms”, Polymers for Advanced Techs, 32:12 (2021), 4663  crossref
    8. S. D. Gilev, V. S. Prokop'ev, “Electrical resistance of high-pressure phases of tin under shock compression”, Combustion, Explosion and Shock Waves, 51:4 (2015), 482–487  mathnet  mathnet  crossref  crossref
    9. Sergey I. Shkuratov, Jason Baird, Vladimir G. Antipov, Evgueni F. Talantsev, Allen H. Stults, Larry L. Altgilbers, 2015 IEEE Pulsed Power Conference (PPC), 2015, 1  crossref
    10. Sergey I. Shkuratov, Jason Baird, Evgueni F. Talantsev, “Extension of thickness-dependent dielectric breakdown law on adiabatically compressed ferroelectric materials”, Applied Physics Letters, 102:5 (2013)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025