Citation:
Yu. L. Daletskii, “A noncommutative taylor formula and functions of triangle operators”, Funktsional. Anal. i Prilozhen., 24:1 (1990), 74–76; Funct. Anal. Appl., 24:1 (1990), 64–66
\Bibitem{Dal90}
\by Yu.~L.~Daletskii
\paper A noncommutative taylor formula and functions of triangle operators
\jour Funktsional. Anal. i Prilozhen.
\yr 1990
\vol 24
\issue 1
\pages 74--76
\mathnet{http://mi.mathnet.ru/faa923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1052274}
\zmath{https://zbmath.org/?q=an:0734.41031}
\transl
\jour Funct. Anal. Appl.
\yr 1990
\vol 24
\issue 1
\pages 64--66
\crossref{https://doi.org/10.1007/BF01077924}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EL45200013}
Linking options:
https://www.mathnet.ru/eng/faa923
https://www.mathnet.ru/eng/faa/v24/i1/p74
This publication is cited in the following 12 articles:
Qiquan Fang, Yunzhan Shen, Chang Eon Shin, Xiangxing Tao, “Norm-controlled inversion in Banach algebras of integral operators”, Banach J. Math. Anal., 17:2 (2023)
E. Yu. Guseva, V. G. Kurbatov, “Inverse-closedness of the subalgebra of locally nuclear operators”, Anal Math, 49:2 (2023), 467
Qiquan Fang, Chang Eon Shin, Qiyu Sun, “Polynomial Control on Weighted Stability Bounds and Inversion Norms of Localized Matrices on Simple Graphs”, J Fourier Anal Appl, 27:5 (2021)
Qiquan Fang, Chang Eon Shin, “Stability of Localized Integral Operators on Normal Spaces of Homogeneous Type”, Numerical Functional Analysis and Optimization, 40:5 (2019), 491
Chang Eon Shin, “WIENER'S LEMMA FOR INFINITE MATRICES OF GOHBERG-BASKAKOV-SJÖSTRAND CLASS”, Bulletin of the Korean Mathematical Society, 53:2 (2016), 541
Chang Eon Shin, Qi-yu Sun, “Wiener's lemma: localization and various approaches”, Appl. Math. J. Chin. Univ., 28:4 (2013), 465
Qiyu Sun, “Frames in spaces with finite rate of innovation”, Adv Comput Math, 28:4 (2008), 301
Qiyu Sun, “Nonuniform Average Sampling and Reconstruction of Signals with Finite Rate of Innovation”, SIAM J. Math. Anal., 38:5 (2007), 1389
M. S. Agranovich, Encyclopaedia of Mathematical Sciences, 63, Partial Differential Equations VI, 1994, 1
M. N. Araslanov, Yu. L. Daletskii, “Composite logarithm in the class of formal operator power series”, Funct. Anal. Appl., 26:2 (1992), 121–124
M. S. Agranovich, “On modules of eigenvalues for non-self-adjoint agmon–Douglis–Nirenberg elliptic boundary problems with a parameter”, Funct. Anal. Appl., 26:2 (1992), 116–119