Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1992, Volume 26, Issue 3, Pages 90–92 (Mi faa809)  

This article is cited in 19 scientific papers (total in 19 papers)

Brief communications

On the quantum flag manifold

Ya. S. Soibel'man

Rostov State University
References:
Received: 29.08.1990
English version:
Functional Analysis and Its Applications, 1992, Volume 26, Issue 3, Pages 225–227
DOI: https://doi.org/10.1007/BF01075642
Bibliographic databases:
Document Type: Article
UDC: 512.554.3+512.667.7
Language: Russian
Citation: Ya. S. Soibel'man, “On the quantum flag manifold”, Funktsional. Anal. i Prilozhen., 26:3 (1992), 90–92; Funct. Anal. Appl., 26:3 (1992), 225–227
Citation in format AMSBIB
\Bibitem{Soi92}
\by Ya.~S.~Soibel'man
\paper On the quantum flag manifold
\jour Funktsional. Anal. i Prilozhen.
\yr 1992
\vol 26
\issue 3
\pages 90--92
\mathnet{http://mi.mathnet.ru/faa809}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1189033}
\zmath{https://zbmath.org/?q=an:0820.17017}
\transl
\jour Funct. Anal. Appl.
\yr 1992
\vol 26
\issue 3
\pages 225--227
\crossref{https://doi.org/10.1007/BF01075642}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KE97600015}
Linking options:
  • https://www.mathnet.ru/eng/faa809
  • https://www.mathnet.ru/eng/faa/v26/i3/p90
  • This publication is cited in the following 19 articles:
    1. Réamonn Ó Buachalla, Petr Somberg, “Lusztig's Positive Root Vectors and a Dolbeault Complex for the A-Series Full Quantum Flag Manifolds”, Journal of Algebra, 2025  crossref
    2. Alessandro Carotenuto, Fredy Díaz García, Reamonn Ó Buachalla, “A Borel–Weil Theorem for the Irreducible Quantum Flag Manifolds”, International Mathematics Research Notices, 2023:15 (2023), 12977  crossref
    3. L. RIGAL, P. ZADUNAISKY, “QUANTUM TORIC DEGENERATION OF QUANTUM FLAG AND SCHUBERT VARIETIES”, Transformation Groups, 26:3 (2021), 1113  crossref
    4. K. De Commer, M. Matassa, “Quantum flag manifolds, quantum symmetric spaces and their associated universal K-matrices”, Advances in Mathematics, 366 (2020), 107029  crossref
    5. Réamonn Ó Buachalla, “Noncommutative complex structures on quantum homogeneous spaces”, Journal of Geometry and Physics, 99 (2016), 154  crossref
    6. Edwin Beggs, S. Paul Smith, “Non-commutative complex differential geometry”, Journal of Geometry and Physics, 72 (2013), 7  crossref
    7. Réamonn Ó Buachalla, “Quantum Bundle Description of Quantum Projective Spaces”, Commun. Math. Phys., 316:2 (2012), 345  crossref
    8. Milen Yakimov, “A classification of 𝐻-primes of quantum partial flag varieties”, Proc. Amer. Math. Soc., 138:4 (2009), 1249  crossref
    9. Stefan Kolb, “The AS–Cohen–Macaulay property for quantum flag manifolds of minuscule weight”, Journal of Algebra, 319:8 (2008), 3518  crossref
    10. István Heckenberger, Stefan Kolb, “De Rham complex for quantized irreducible flag manifolds”, Journal of Algebra, 305:2 (2006), 704  crossref
    11. R. Fioresi, “Commutation relations among quantum minors in Oq(Mn(k))”, Journal of Algebra, 280:2 (2004), 655  crossref
    12. Christian Ohn, ““Classical” Flag Varieties for Quantum Groups: The Standard Quantum SL(n,C)”, Advances in Mathematics, 171:1 (2002), 103  crossref
    13. N. Reshetikhin, A. Voronov, A. Weinstein, “Semiquantum geometry”, J. Math. Sci., 82:1 (1996), 3255–3267  mathnet  mathnet  crossref
    14. A. R. GOVER, R. B. ZHANG, “GEOMETRY OF QUANTUM HOMOGENEOUS VECTOR BUNDLES AND REPRESENTATION THEORY OF QUANTUM GROUPS I”, Rev. Math. Phys., 11:05 (1999), 533  crossref
    15. R. Fioresi, “Quantum Deformation of the Grassmannian Manifold”, Journal of Algebra, 214:2 (1999), 418  crossref
    16. R. Fioresi, “Quantizations of Flag Manifolds and Conformal Space Time”, Rev. Math. Phys., 09:04 (1997), 453  crossref
    17. Pavel Šťovı́ček, Reidun Twarock, “Representations of 𝒰h (𝔰𝔲(N) ) derived from quantum flag manifolds”, Journal of Mathematical Physics, 38:2 (1997), 1161  crossref
    18. B. Jurĉo, P. Ŝťovíĉek, “Coherent states for quantum compact groups”, Commun.Math. Phys., 182:1 (1996), 221  crossref
    19. J. Donin, D. Gurevich, “Quantum orbits of theR-matrix type”, Lett Math Phys, 35:3 (1995), 263  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :224
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025