Abstract:
We construct a family of maximal commutative subalgebras in the tensor product of n copies of the universal enveloping algebra U(g) of a semisimple Lie algebra g. This family is parameterized by finite sequences μ, z1,…,zn, where μ∈g∗ and zi∈C. The construction presented here generalizes the famous construction of the higher Gaudin Hamiltonians due to Feigin, Frenkel, and Reshetikhin. For n=1, the corresponding commutative subalgebras in the Poisson algebra S(g) were obtained by Mishchenko and Fomenko with the help of the argument shift method. For commutative algebras of our family, we establish a connection between their representations in the tensor products of finite-dimensional g-modules and the Gaudin model.
Citation:
L. G. Rybnikov, “The Argument Shift Method and the Gaudin Model”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 30–43; Funct. Anal. Appl., 40:3 (2006), 188–199
\Bibitem{Ryb06}
\by L.~G.~Rybnikov
\paper The Argument Shift Method and the Gaudin Model
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 3
\pages 30--43
\mathnet{http://mi.mathnet.ru/faa741}
\crossref{https://doi.org/10.4213/faa741}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265683}
\zmath{https://zbmath.org/?q=an:1112.17018}
\elib{https://elibrary.ru/item.asp?id=9296641}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 3
\pages 188--199
\crossref{https://doi.org/10.1007/s10688-006-0030-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241583800004}
\elib{https://elibrary.ru/item.asp?id=13506839}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749523554}
Linking options:
https://www.mathnet.ru/eng/faa741
https://doi.org/10.4213/faa741
https://www.mathnet.ru/eng/faa/v40/i3/p30
This publication is cited in the following 59 articles:
Akaki Tikaradze, “Rigidity of quantum algebras”, Journal of London Math Soc, 111:3 (2025)
Yasushi Ikeda, Gerogy Sharygin, “The argument shift method in universal enveloping algebra Ugld”, Journal of Geometry and Physics, 195 (2024), 105030
Oksana S. Yakimova, “Poisson commutative subalgebras associated with a Cartan subalgebra”, manuscripta math., 2024
G. I. Sharygin, “Quasiderivations of the algebra Ugln and the quantum Mischenko–Fomenko algebras”, Funct. Anal. Appl., 58:3 (2024), 326–339
Y. Ikeda, “Second-order quantum argument shifts in Ugld”, Theoret. and Math. Phys., 220:2 (2024), 1294–1303
Tamás Hausel, “Commutative avatars of representations of semisimple Lie groups”, Proc. Natl. Acad. Sci. U.S.A., 121:38 (2024)
Yasushi Ikeda, Trends in Mathematics, Geometric Methods in Physics XL, 2024, 383
Dmitri I. Panyushev, Oksana S. Yakimova, “Automorphisms of finite order, periodic contractions, and Poisson-commutative subalgebras of S(g)”, Math. Z., 303:2 (2023)
G. Sharygin, Contemporary Mathematics, 789, The Diverse World of PDEs, 2023, 197
Adrien Brochier, Iain Gordon, Noah White, “Gaudin algebras, RSK and Calogero–Moser cells in Type A”, Proceedings of London Math Soc, 126:5 (2023), 1467
Ilin A., Rybnikov L., “On Classical Limits of Bethe Subalgebras in Yangians”, Transform. Groups, 26:2 (2021), 537–564
Yakimova O., “Commutative Subalgebras of U(Q) of Maximal Transcendence Degree”, Math. Res. Lett., 28:3 (2021), 907–924
Dmitri I Panyushev, Oksana S Yakimova, “Poisson-Commutative Subalgebras of 𝒮(𝔤) associated with Involutions”, International Mathematics Research Notices, 2021:23 (2021), 18367