Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 3, Pages 30–43
DOI: https://doi.org/10.4213/faa741
(Mi faa741)
 

This article is cited in 59 scientific papers (total in 59 papers)

The Argument Shift Method and the Gaudin Model

L. G. Rybnikovab

a Independent University of Moscow
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We construct a family of maximal commutative subalgebras in the tensor product of n copies of the universal enveloping algebra U(g) of a semisimple Lie algebra g. This family is parameterized by finite sequences μ, z1,,zn, where μg and ziC. The construction presented here generalizes the famous construction of the higher Gaudin Hamiltonians due to Feigin, Frenkel, and Reshetikhin. For n=1, the corresponding commutative subalgebras in the Poisson algebra S(g) were obtained by Mishchenko and Fomenko with the help of the argument shift method. For commutative algebras of our family, we establish a connection between their representations in the tensor products of finite-dimensional g-modules and the Gaudin model.
Keywords: Gaudin model, argument shift method, Mishchenko–Fomenko subalgebra, affine Kac–Moody algebra, critical level.
Received: 09.04.2005
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 3, Pages 188–199
DOI: https://doi.org/10.1007/s10688-006-0030-3
Bibliographic databases:
Document Type: Article
UDC: 512.813.4
Language: Russian
Citation: L. G. Rybnikov, “The Argument Shift Method and the Gaudin Model”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 30–43; Funct. Anal. Appl., 40:3 (2006), 188–199
Citation in format AMSBIB
\Bibitem{Ryb06}
\by L.~G.~Rybnikov
\paper The Argument Shift Method and the Gaudin Model
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 3
\pages 30--43
\mathnet{http://mi.mathnet.ru/faa741}
\crossref{https://doi.org/10.4213/faa741}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265683}
\zmath{https://zbmath.org/?q=an:1112.17018}
\elib{https://elibrary.ru/item.asp?id=9296641}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 3
\pages 188--199
\crossref{https://doi.org/10.1007/s10688-006-0030-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241583800004}
\elib{https://elibrary.ru/item.asp?id=13506839}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749523554}
Linking options:
  • https://www.mathnet.ru/eng/faa741
  • https://doi.org/10.4213/faa741
  • https://www.mathnet.ru/eng/faa/v40/i3/p30
  • This publication is cited in the following 59 articles:
    1. Akaki Tikaradze, “Rigidity of quantum algebras”, Journal of London Math Soc, 111:3 (2025)  crossref
    2. Yasushi Ikeda, Gerogy Sharygin, “The argument shift method in universal enveloping algebra Ugld”, Journal of Geometry and Physics, 195 (2024), 105030  crossref
    3. Oksana S. Yakimova, “Poisson commutative subalgebras associated with a Cartan subalgebra”, manuscripta math., 2024  crossref
    4. G. I. Sharygin, “Quasiderivations of the algebra Ugln and the quantum Mischenko–Fomenko algebras”, Funct. Anal. Appl., 58:3 (2024), 326–339  mathnet  crossref  crossref
    5. Y. Ikeda, “Second-order quantum argument shifts in Ugld”, Theoret. and Math. Phys., 220:2 (2024), 1294–1303  mathnet  crossref  crossref  mathscinet  adsnasa
    6. Tamás Hausel, “Commutative avatars of representations of semisimple Lie groups”, Proc. Natl. Acad. Sci. U.S.A., 121:38 (2024)  crossref
    7. Yasushi Ikeda, Trends in Mathematics, Geometric Methods in Physics XL, 2024, 383  crossref
    8. Dmitri I. Panyushev, Oksana S. Yakimova, “Automorphisms of finite order, periodic contractions, and Poisson-commutative subalgebras of S(g)”, Math. Z., 303:2 (2023)  crossref
    9. G. Sharygin, Contemporary Mathematics, 789, The Diverse World of PDEs, 2023, 197  crossref
    10. Adrien Brochier, Iain Gordon, Noah White, “Gaudin algebras, RSK and Calogero–Moser cells in Type A”, Proceedings of London Math Soc, 126:5 (2023), 1467  crossref
    11. Iva Halacheva, Contemporary Mathematics, 790, Compactifications, Configurations, and Cohomology, 2023, 79  crossref
    12. Y. Ikeda, “Quasidifferential operator and quantum argument shift method”, Theoret. and Math. Phys., 212:1 (2022), 918–924  mathnet  crossref  crossref  mathscinet  adsnasa
    13. Aleksei Ilin, Inna Mashanova-Golikova, Leonid Rybnikov, “Spectra of Bethe subalgebras of Y(gln) in tame representations”, Lett Math Phys, 112:5 (2022)  crossref
    14. Edward Frenkel, David Hernandez, Nicolai Reshetikhin, “Folded quantum integrable models and deformed W-algebras”, Lett Math Phys, 112:4 (2022)  crossref
    15. Oksana Yakimova, “Symmetrisation and the Feigin–Frenkel centre”, Compositio Math., 158:3 (2022), 585  crossref
    16. Molev I A., “Center At the Critical Level For Centralizers in Type a”, J. Algebra, 566 (2021), 163–186  crossref  mathscinet  zmath  isi
    17. Panyushev D.I., Yakimova O.S., “Periodic Automorphisms, Compatible Poisson Brackets, and Gaudin Subalgebras”, Transform. Groups, 26:2 (2021), 641–670  crossref  mathscinet  isi
    18. Ilin A., Rybnikov L., “On Classical Limits of Bethe Subalgebras in Yangians”, Transform. Groups, 26:2 (2021), 537–564  crossref  mathscinet  isi
    19. Yakimova O., “Commutative Subalgebras of U(Q) of Maximal Transcendence Degree”, Math. Res. Lett., 28:3 (2021), 907–924  crossref  mathscinet  isi
    20. Dmitri I Panyushev, Oksana S Yakimova, “Poisson-Commutative Subalgebras of 𝒮(𝔤) associated with Involutions”, International Mathematics Research Notices, 2021:23 (2021), 18367  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:997
    Full-text PDF :472
    References:116
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025